Solve for x
x = -\frac{3}{2} = -1\frac{1}{2} = -1.5
Graph
Share
Copied to clipboard
3x+2+\left(x-1\right)\times 3=4\left(x-1\right)
Variable x cannot be equal to 1 since division by zero is not defined. Multiply both sides of the equation by x-1.
3x+2+3x-3=4\left(x-1\right)
Use the distributive property to multiply x-1 by 3.
6x+2-3=4\left(x-1\right)
Combine 3x and 3x to get 6x.
6x-1=4\left(x-1\right)
Subtract 3 from 2 to get -1.
6x-1=4x-4
Use the distributive property to multiply 4 by x-1.
6x-1-4x=-4
Subtract 4x from both sides.
2x-1=-4
Combine 6x and -4x to get 2x.
2x=-4+1
Add 1 to both sides.
2x=-3
Add -4 and 1 to get -3.
x=\frac{-3}{2}
Divide both sides by 2.
x=-\frac{3}{2}
Fraction \frac{-3}{2} can be rewritten as -\frac{3}{2} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}