Solve for x
x=\frac{\sqrt{15}}{5}+1\approx 1.774596669
x=-\frac{\sqrt{15}}{5}+1\approx 0.225403331
Graph
Share
Copied to clipboard
-\left(3x+2\right)=\left(x-3\right)\left(5x+1\right)+3+x
Variable x cannot be equal to any of the values -3,3 since division by zero is not defined. Multiply both sides of the equation by \left(x-3\right)\left(x+3\right), the least common multiple of 9-x^{2},x+3,3-x.
-3x-2=\left(x-3\right)\left(5x+1\right)+3+x
To find the opposite of 3x+2, find the opposite of each term.
-3x-2=5x^{2}-14x-3+3+x
Use the distributive property to multiply x-3 by 5x+1 and combine like terms.
-3x-2=5x^{2}-14x+x
Add -3 and 3 to get 0.
-3x-2=5x^{2}-13x
Combine -14x and x to get -13x.
-3x-2-5x^{2}=-13x
Subtract 5x^{2} from both sides.
-3x-2-5x^{2}+13x=0
Add 13x to both sides.
10x-2-5x^{2}=0
Combine -3x and 13x to get 10x.
-5x^{2}+10x-2=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-10±\sqrt{10^{2}-4\left(-5\right)\left(-2\right)}}{2\left(-5\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -5 for a, 10 for b, and -2 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-10±\sqrt{100-4\left(-5\right)\left(-2\right)}}{2\left(-5\right)}
Square 10.
x=\frac{-10±\sqrt{100+20\left(-2\right)}}{2\left(-5\right)}
Multiply -4 times -5.
x=\frac{-10±\sqrt{100-40}}{2\left(-5\right)}
Multiply 20 times -2.
x=\frac{-10±\sqrt{60}}{2\left(-5\right)}
Add 100 to -40.
x=\frac{-10±2\sqrt{15}}{2\left(-5\right)}
Take the square root of 60.
x=\frac{-10±2\sqrt{15}}{-10}
Multiply 2 times -5.
x=\frac{2\sqrt{15}-10}{-10}
Now solve the equation x=\frac{-10±2\sqrt{15}}{-10} when ± is plus. Add -10 to 2\sqrt{15}.
x=-\frac{\sqrt{15}}{5}+1
Divide -10+2\sqrt{15} by -10.
x=\frac{-2\sqrt{15}-10}{-10}
Now solve the equation x=\frac{-10±2\sqrt{15}}{-10} when ± is minus. Subtract 2\sqrt{15} from -10.
x=\frac{\sqrt{15}}{5}+1
Divide -10-2\sqrt{15} by -10.
x=-\frac{\sqrt{15}}{5}+1 x=\frac{\sqrt{15}}{5}+1
The equation is now solved.
-\left(3x+2\right)=\left(x-3\right)\left(5x+1\right)+3+x
Variable x cannot be equal to any of the values -3,3 since division by zero is not defined. Multiply both sides of the equation by \left(x-3\right)\left(x+3\right), the least common multiple of 9-x^{2},x+3,3-x.
-3x-2=\left(x-3\right)\left(5x+1\right)+3+x
To find the opposite of 3x+2, find the opposite of each term.
-3x-2=5x^{2}-14x-3+3+x
Use the distributive property to multiply x-3 by 5x+1 and combine like terms.
-3x-2=5x^{2}-14x+x
Add -3 and 3 to get 0.
-3x-2=5x^{2}-13x
Combine -14x and x to get -13x.
-3x-2-5x^{2}=-13x
Subtract 5x^{2} from both sides.
-3x-2-5x^{2}+13x=0
Add 13x to both sides.
10x-2-5x^{2}=0
Combine -3x and 13x to get 10x.
10x-5x^{2}=2
Add 2 to both sides. Anything plus zero gives itself.
-5x^{2}+10x=2
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-5x^{2}+10x}{-5}=\frac{2}{-5}
Divide both sides by -5.
x^{2}+\frac{10}{-5}x=\frac{2}{-5}
Dividing by -5 undoes the multiplication by -5.
x^{2}-2x=\frac{2}{-5}
Divide 10 by -5.
x^{2}-2x=-\frac{2}{5}
Divide 2 by -5.
x^{2}-2x+1=-\frac{2}{5}+1
Divide -2, the coefficient of the x term, by 2 to get -1. Then add the square of -1 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-2x+1=\frac{3}{5}
Add -\frac{2}{5} to 1.
\left(x-1\right)^{2}=\frac{3}{5}
Factor x^{2}-2x+1. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-1\right)^{2}}=\sqrt{\frac{3}{5}}
Take the square root of both sides of the equation.
x-1=\frac{\sqrt{15}}{5} x-1=-\frac{\sqrt{15}}{5}
Simplify.
x=\frac{\sqrt{15}}{5}+1 x=-\frac{\sqrt{15}}{5}+1
Add 1 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}