Solve for x
x\geq -7
Graph
Share
Copied to clipboard
2\left(3x+2\right)-24\leq 9x+1
Multiply both sides of the equation by 8, the least common multiple of 4,8. Since 8 is positive, the inequality direction remains the same.
6x+4-24\leq 9x+1
Use the distributive property to multiply 2 by 3x+2.
6x-20\leq 9x+1
Subtract 24 from 4 to get -20.
6x-20-9x\leq 1
Subtract 9x from both sides.
-3x-20\leq 1
Combine 6x and -9x to get -3x.
-3x\leq 1+20
Add 20 to both sides.
-3x\leq 21
Add 1 and 20 to get 21.
x\geq \frac{21}{-3}
Divide both sides by -3. Since -3 is negative, the inequality direction is changed.
x\geq -7
Divide 21 by -3 to get -7.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}