Solve for x
x=-\frac{5}{6}\approx -0.833333333
Graph
Share
Copied to clipboard
\left(10x-3\right)\left(3x+1\right)=\left(5x+7\right)\left(6x+11\right)
Variable x cannot be equal to any of the values -\frac{7}{5},\frac{3}{10} since division by zero is not defined. Multiply both sides of the equation by \left(10x-3\right)\left(5x+7\right), the least common multiple of 5x+7,10x-3.
30x^{2}+x-3=\left(5x+7\right)\left(6x+11\right)
Use the distributive property to multiply 10x-3 by 3x+1 and combine like terms.
30x^{2}+x-3=30x^{2}+97x+77
Use the distributive property to multiply 5x+7 by 6x+11 and combine like terms.
30x^{2}+x-3-30x^{2}=97x+77
Subtract 30x^{2} from both sides.
x-3=97x+77
Combine 30x^{2} and -30x^{2} to get 0.
x-3-97x=77
Subtract 97x from both sides.
-96x-3=77
Combine x and -97x to get -96x.
-96x=77+3
Add 3 to both sides.
-96x=80
Add 77 and 3 to get 80.
x=\frac{80}{-96}
Divide both sides by -96.
x=-\frac{5}{6}
Reduce the fraction \frac{80}{-96} to lowest terms by extracting and canceling out 16.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}