Solve for x
x\leq -\frac{23}{14}
Graph
Share
Copied to clipboard
8\left(3x+1\right)\leq 5\left(2x-3\right)
Multiply both sides of the equation by 40, the least common multiple of 5,8. Since 40 is positive, the inequality direction remains the same.
24x+8\leq 5\left(2x-3\right)
Use the distributive property to multiply 8 by 3x+1.
24x+8\leq 10x-15
Use the distributive property to multiply 5 by 2x-3.
24x+8-10x\leq -15
Subtract 10x from both sides.
14x+8\leq -15
Combine 24x and -10x to get 14x.
14x\leq -15-8
Subtract 8 from both sides.
14x\leq -23
Subtract 8 from -15 to get -23.
x\leq -\frac{23}{14}
Divide both sides by 14. Since 14 is positive, the inequality direction remains the same.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}