Solve for x
x\leq 1
Graph
Share
Copied to clipboard
15\left(3x+1\right)-20\leq 8\left(3x+2\right)+20\times 4\left(1-x\right)
Multiply both sides of the equation by 60, the least common multiple of 4,3,15. Since 60 is positive, the inequality direction remains the same.
45x+15-20\leq 8\left(3x+2\right)+20\times 4\left(1-x\right)
Use the distributive property to multiply 15 by 3x+1.
45x-5\leq 8\left(3x+2\right)+20\times 4\left(1-x\right)
Subtract 20 from 15 to get -5.
45x-5\leq 24x+16+20\times 4\left(1-x\right)
Use the distributive property to multiply 8 by 3x+2.
45x-5\leq 24x+16+80\left(1-x\right)
Multiply 20 and 4 to get 80.
45x-5\leq 24x+16+80-80x
Use the distributive property to multiply 80 by 1-x.
45x-5\leq 24x+96-80x
Add 16 and 80 to get 96.
45x-5\leq -56x+96
Combine 24x and -80x to get -56x.
45x-5+56x\leq 96
Add 56x to both sides.
101x-5\leq 96
Combine 45x and 56x to get 101x.
101x\leq 96+5
Add 5 to both sides.
101x\leq 101
Add 96 and 5 to get 101.
x\leq \frac{101}{101}
Divide both sides by 101. Since 101 is positive, the inequality direction remains the same.
x\leq 1
Divide 101 by 101 to get 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}