Solve for x
x>\frac{13}{10}
Graph
Share
Copied to clipboard
3\left(3x+1\right)>12+4-x
Multiply both sides of the equation by 12, the least common multiple of 4,12. Since 12 is positive, the inequality direction remains the same.
9x+3>12+4-x
Use the distributive property to multiply 3 by 3x+1.
9x+3>16-x
Add 12 and 4 to get 16.
9x+3+x>16
Add x to both sides.
10x+3>16
Combine 9x and x to get 10x.
10x>16-3
Subtract 3 from both sides.
10x>13
Subtract 3 from 16 to get 13.
x>\frac{13}{10}
Divide both sides by 10. Since 10 is positive, the inequality direction remains the same.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}