Evaluate
\frac{4x\left(x+6\right)}{4x^{2}-25}
Expand
\frac{4\left(x^{2}+6x\right)}{4x^{2}-25}
Graph
Share
Copied to clipboard
\frac{\left(3x+1\right)\left(2x+5\right)}{\left(2x-5\right)\left(2x+5\right)}-\frac{\left(x-1\right)\left(2x-5\right)}{\left(2x-5\right)\left(2x+5\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2x-5 and 2x+5 is \left(2x-5\right)\left(2x+5\right). Multiply \frac{3x+1}{2x-5} times \frac{2x+5}{2x+5}. Multiply \frac{x-1}{2x+5} times \frac{2x-5}{2x-5}.
\frac{\left(3x+1\right)\left(2x+5\right)-\left(x-1\right)\left(2x-5\right)}{\left(2x-5\right)\left(2x+5\right)}
Since \frac{\left(3x+1\right)\left(2x+5\right)}{\left(2x-5\right)\left(2x+5\right)} and \frac{\left(x-1\right)\left(2x-5\right)}{\left(2x-5\right)\left(2x+5\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{6x^{2}+15x+2x+5-2x^{2}+5x+2x-5}{\left(2x-5\right)\left(2x+5\right)}
Do the multiplications in \left(3x+1\right)\left(2x+5\right)-\left(x-1\right)\left(2x-5\right).
\frac{4x^{2}+24x}{\left(2x-5\right)\left(2x+5\right)}
Combine like terms in 6x^{2}+15x+2x+5-2x^{2}+5x+2x-5.
\frac{4x^{2}+24x}{4x^{2}-25}
Expand \left(2x-5\right)\left(2x+5\right).
\frac{\left(3x+1\right)\left(2x+5\right)}{\left(2x-5\right)\left(2x+5\right)}-\frac{\left(x-1\right)\left(2x-5\right)}{\left(2x-5\right)\left(2x+5\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2x-5 and 2x+5 is \left(2x-5\right)\left(2x+5\right). Multiply \frac{3x+1}{2x-5} times \frac{2x+5}{2x+5}. Multiply \frac{x-1}{2x+5} times \frac{2x-5}{2x-5}.
\frac{\left(3x+1\right)\left(2x+5\right)-\left(x-1\right)\left(2x-5\right)}{\left(2x-5\right)\left(2x+5\right)}
Since \frac{\left(3x+1\right)\left(2x+5\right)}{\left(2x-5\right)\left(2x+5\right)} and \frac{\left(x-1\right)\left(2x-5\right)}{\left(2x-5\right)\left(2x+5\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{6x^{2}+15x+2x+5-2x^{2}+5x+2x-5}{\left(2x-5\right)\left(2x+5\right)}
Do the multiplications in \left(3x+1\right)\left(2x+5\right)-\left(x-1\right)\left(2x-5\right).
\frac{4x^{2}+24x}{\left(2x-5\right)\left(2x+5\right)}
Combine like terms in 6x^{2}+15x+2x+5-2x^{2}+5x+2x-5.
\frac{4x^{2}+24x}{4x^{2}-25}
Expand \left(2x-5\right)\left(2x+5\right).
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}