Solve for x
x=14000
Graph
Share
Copied to clipboard
15\left(3x+\frac{3x}{10}\right)=44\left(x+1750\right)
Variable x cannot be equal to -1750 since division by zero is not defined. Multiply both sides of the equation by 60\left(x+1750\right), the least common multiple of 4x+7000,15.
45x+15\times \frac{3x}{10}=44\left(x+1750\right)
Use the distributive property to multiply 15 by 3x+\frac{3x}{10}.
45x+\frac{15\times 3x}{10}=44\left(x+1750\right)
Express 15\times \frac{3x}{10} as a single fraction.
45x+\frac{45x}{10}=44\left(x+1750\right)
Multiply 15 and 3 to get 45.
45x+\frac{9}{2}x=44\left(x+1750\right)
Divide 45x by 10 to get \frac{9}{2}x.
\frac{99}{2}x=44\left(x+1750\right)
Combine 45x and \frac{9}{2}x to get \frac{99}{2}x.
\frac{99}{2}x=44x+77000
Use the distributive property to multiply 44 by x+1750.
\frac{99}{2}x-44x=77000
Subtract 44x from both sides.
\frac{11}{2}x=77000
Combine \frac{99}{2}x and -44x to get \frac{11}{2}x.
x=77000\times \frac{2}{11}
Multiply both sides by \frac{2}{11}, the reciprocal of \frac{11}{2}.
x=14000
Multiply 77000 and \frac{2}{11} to get 14000.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}