Solve for t
t = -\frac{14}{5} = -2\frac{4}{5} = -2.8
Share
Copied to clipboard
5\left(3t-2\right)=4\left(5t+1\right)
Multiply both sides of the equation by 20, the least common multiple of 4,5.
15t-10=4\left(5t+1\right)
Use the distributive property to multiply 5 by 3t-2.
15t-10=20t+4
Use the distributive property to multiply 4 by 5t+1.
15t-10-20t=4
Subtract 20t from both sides.
-5t-10=4
Combine 15t and -20t to get -5t.
-5t=4+10
Add 10 to both sides.
-5t=14
Add 4 and 10 to get 14.
t=\frac{14}{-5}
Divide both sides by -5.
t=-\frac{14}{5}
Fraction \frac{14}{-5} can be rewritten as -\frac{14}{5} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}