Solve for t
t = -\frac{14}{3} = -4\frac{2}{3} \approx -4.666666667
Share
Copied to clipboard
3\times 3t=2\left(6t+7\right)
Multiply both sides of the equation by 6, the least common multiple of 2,3.
9t=2\left(6t+7\right)
Multiply 3 and 3 to get 9.
9t=12t+14
Use the distributive property to multiply 2 by 6t+7.
9t-12t=14
Subtract 12t from both sides.
-3t=14
Combine 9t and -12t to get -3t.
t=\frac{14}{-3}
Divide both sides by -3.
t=-\frac{14}{3}
Fraction \frac{14}{-3} can be rewritten as -\frac{14}{3} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}