Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{s\left(3s+40\right)}{s\left(s-2\right)\left(s+6\right)}+\frac{5s^{2}+8s}{s^{3}+4s^{2}-12s}
Factor the expressions that are not already factored in \frac{3s^{2}+40s}{s^{3}+4s^{2}-12s}.
\frac{3s+40}{\left(s-2\right)\left(s+6\right)}+\frac{5s^{2}+8s}{s^{3}+4s^{2}-12s}
Cancel out s in both numerator and denominator.
\frac{3s+40}{\left(s-2\right)\left(s+6\right)}+\frac{s\left(5s+8\right)}{s\left(s-2\right)\left(s+6\right)}
Factor the expressions that are not already factored in \frac{5s^{2}+8s}{s^{3}+4s^{2}-12s}.
\frac{3s+40}{\left(s-2\right)\left(s+6\right)}+\frac{5s+8}{\left(s-2\right)\left(s+6\right)}
Cancel out s in both numerator and denominator.
\frac{3s+40+5s+8}{\left(s-2\right)\left(s+6\right)}
Since \frac{3s+40}{\left(s-2\right)\left(s+6\right)} and \frac{5s+8}{\left(s-2\right)\left(s+6\right)} have the same denominator, add them by adding their numerators.
\frac{8s+48}{\left(s-2\right)\left(s+6\right)}
Combine like terms in 3s+40+5s+8.
\frac{8\left(s+6\right)}{\left(s-2\right)\left(s+6\right)}
Factor the expressions that are not already factored in \frac{8s+48}{\left(s-2\right)\left(s+6\right)}.
\frac{8}{s-2}
Cancel out s+6 in both numerator and denominator.
\frac{s\left(3s+40\right)}{s\left(s-2\right)\left(s+6\right)}+\frac{5s^{2}+8s}{s^{3}+4s^{2}-12s}
Factor the expressions that are not already factored in \frac{3s^{2}+40s}{s^{3}+4s^{2}-12s}.
\frac{3s+40}{\left(s-2\right)\left(s+6\right)}+\frac{5s^{2}+8s}{s^{3}+4s^{2}-12s}
Cancel out s in both numerator and denominator.
\frac{3s+40}{\left(s-2\right)\left(s+6\right)}+\frac{s\left(5s+8\right)}{s\left(s-2\right)\left(s+6\right)}
Factor the expressions that are not already factored in \frac{5s^{2}+8s}{s^{3}+4s^{2}-12s}.
\frac{3s+40}{\left(s-2\right)\left(s+6\right)}+\frac{5s+8}{\left(s-2\right)\left(s+6\right)}
Cancel out s in both numerator and denominator.
\frac{3s+40+5s+8}{\left(s-2\right)\left(s+6\right)}
Since \frac{3s+40}{\left(s-2\right)\left(s+6\right)} and \frac{5s+8}{\left(s-2\right)\left(s+6\right)} have the same denominator, add them by adding their numerators.
\frac{8s+48}{\left(s-2\right)\left(s+6\right)}
Combine like terms in 3s+40+5s+8.
\frac{8\left(s+6\right)}{\left(s-2\right)\left(s+6\right)}
Factor the expressions that are not already factored in \frac{8s+48}{\left(s-2\right)\left(s+6\right)}.
\frac{8}{s-2}
Cancel out s+6 in both numerator and denominator.