Evaluate
\frac{3r^{2}+5rt-6r+10t-40}{r^{2}-4}
Differentiate w.r.t. t
\frac{5}{r-2}
Share
Copied to clipboard
\frac{3r\left(r-2\right)}{\left(r-2\right)\left(r+2\right)}+\frac{5t\left(r+2\right)}{\left(r-2\right)\left(r+2\right)}-\frac{40}{r^{2}-4}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of r+2 and r-2 is \left(r-2\right)\left(r+2\right). Multiply \frac{3r}{r+2} times \frac{r-2}{r-2}. Multiply \frac{5t}{r-2} times \frac{r+2}{r+2}.
\frac{3r\left(r-2\right)+5t\left(r+2\right)}{\left(r-2\right)\left(r+2\right)}-\frac{40}{r^{2}-4}
Since \frac{3r\left(r-2\right)}{\left(r-2\right)\left(r+2\right)} and \frac{5t\left(r+2\right)}{\left(r-2\right)\left(r+2\right)} have the same denominator, add them by adding their numerators.
\frac{3r^{2}-6r+5tr+10t}{\left(r-2\right)\left(r+2\right)}-\frac{40}{r^{2}-4}
Do the multiplications in 3r\left(r-2\right)+5t\left(r+2\right).
\frac{3r^{2}-6r+5tr+10t}{\left(r-2\right)\left(r+2\right)}-\frac{40}{\left(r-2\right)\left(r+2\right)}
Factor r^{2}-4.
\frac{3r^{2}-6r+5tr+10t-40}{\left(r-2\right)\left(r+2\right)}
Since \frac{3r^{2}-6r+5tr+10t}{\left(r-2\right)\left(r+2\right)} and \frac{40}{\left(r-2\right)\left(r+2\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{3r^{2}-6r+5tr+10t-40}{r^{2}-4}
Expand \left(r-2\right)\left(r+2\right).
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}