Evaluate
2q^{2}p^{3}
Differentiate w.r.t. p
6\left(pq\right)^{2}
Share
Copied to clipboard
\frac{3p^{5}q^{3}\times 4q}{-2pq\left(-3\right)pq}
To multiply powers of the same base, add their exponents. Add 1 and 4 to get 5.
\frac{3p^{5}q^{4}\times 4}{-2pq\left(-3\right)pq}
To multiply powers of the same base, add their exponents. Add 3 and 1 to get 4.
\frac{3p^{5}q^{4}\times 4}{-2p^{2}q\left(-3\right)q}
Multiply p and p to get p^{2}.
\frac{3p^{5}q^{4}\times 4}{-2p^{2}q^{2}\left(-3\right)}
Multiply q and q to get q^{2}.
\frac{2q^{2}p^{3}}{-\left(-1\right)}
Cancel out 2\times 3p^{2}q^{2} in both numerator and denominator.
\frac{2q^{2}p^{3}}{1}
Multiply -1 and -1 to get 1.
2q^{2}p^{3}
Anything divided by one gives itself.
\frac{\mathrm{d}}{\mathrm{d}p}(\frac{12p^{4}q^{4}}{6pq^{2}}p^{1-1})
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
\frac{\mathrm{d}}{\mathrm{d}p}(2q^{2}p^{3}p^{0})
Do the arithmetic.
\frac{\mathrm{d}}{\mathrm{d}p}(2q^{2}p^{3})
For any number a except 0, a^{0}=1.
0
The derivative of a constant term is 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}