Evaluate
\frac{3\left(2x+7\right)}{2q^{2}}
Expand
\frac{3\left(2x+7\right)}{2q^{2}}
Share
Copied to clipboard
\frac{\frac{3p\left(8x^{2}-98\right)}{\left(2x-7\right)\left(5y+3\right)}}{\frac{12pq^{2}}{15y+9}}
Multiply \frac{3p}{2x-7} times \frac{8x^{2}-98}{5y+3} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{3p\left(8x^{2}-98\right)}{\left(2x-7\right)\left(5y+3\right)}}{\frac{12pq^{2}}{3\left(5y+3\right)}}
Factor the expressions that are not already factored in \frac{12pq^{2}}{15y+9}.
\frac{\frac{3p\left(8x^{2}-98\right)}{\left(2x-7\right)\left(5y+3\right)}}{\frac{4pq^{2}}{5y+3}}
Cancel out 3 in both numerator and denominator.
\frac{3p\left(8x^{2}-98\right)\left(5y+3\right)}{\left(2x-7\right)\left(5y+3\right)\times 4pq^{2}}
Divide \frac{3p\left(8x^{2}-98\right)}{\left(2x-7\right)\left(5y+3\right)} by \frac{4pq^{2}}{5y+3} by multiplying \frac{3p\left(8x^{2}-98\right)}{\left(2x-7\right)\left(5y+3\right)} by the reciprocal of \frac{4pq^{2}}{5y+3}.
\frac{3\left(8x^{2}-98\right)}{4\left(2x-7\right)q^{2}}
Cancel out p\left(5y+3\right) in both numerator and denominator.
\frac{2\times 3\left(2x-7\right)\left(2x+7\right)}{4\left(2x-7\right)q^{2}}
Factor the expressions that are not already factored.
\frac{3\left(2x+7\right)}{2q^{2}}
Cancel out 2\left(2x-7\right) in both numerator and denominator.
\frac{6x+21}{2q^{2}}
Expand the expression.
\frac{\frac{3p\left(8x^{2}-98\right)}{\left(2x-7\right)\left(5y+3\right)}}{\frac{12pq^{2}}{15y+9}}
Multiply \frac{3p}{2x-7} times \frac{8x^{2}-98}{5y+3} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{3p\left(8x^{2}-98\right)}{\left(2x-7\right)\left(5y+3\right)}}{\frac{12pq^{2}}{3\left(5y+3\right)}}
Factor the expressions that are not already factored in \frac{12pq^{2}}{15y+9}.
\frac{\frac{3p\left(8x^{2}-98\right)}{\left(2x-7\right)\left(5y+3\right)}}{\frac{4pq^{2}}{5y+3}}
Cancel out 3 in both numerator and denominator.
\frac{3p\left(8x^{2}-98\right)\left(5y+3\right)}{\left(2x-7\right)\left(5y+3\right)\times 4pq^{2}}
Divide \frac{3p\left(8x^{2}-98\right)}{\left(2x-7\right)\left(5y+3\right)} by \frac{4pq^{2}}{5y+3} by multiplying \frac{3p\left(8x^{2}-98\right)}{\left(2x-7\right)\left(5y+3\right)} by the reciprocal of \frac{4pq^{2}}{5y+3}.
\frac{3\left(8x^{2}-98\right)}{4\left(2x-7\right)q^{2}}
Cancel out p\left(5y+3\right) in both numerator and denominator.
\frac{2\times 3\left(2x-7\right)\left(2x+7\right)}{4\left(2x-7\right)q^{2}}
Factor the expressions that are not already factored.
\frac{3\left(2x+7\right)}{2q^{2}}
Cancel out 2\left(2x-7\right) in both numerator and denominator.
\frac{6x+21}{2q^{2}}
Expand the expression.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}