Evaluate
\frac{4\left(p+1\right)p^{2}}{p-3}
Expand
\frac{4\left(p^{3}+p^{2}\right)}{p-3}
Share
Copied to clipboard
\frac{\left(3p^{2}+p-2\right)\left(20p^{3}-16p^{2}\right)}{\left(5p-4\right)\left(3p^{2}-11p+6\right)}
Divide \frac{3p^{2}+p-2}{5p-4} by \frac{3p^{2}-11p+6}{20p^{3}-16p^{2}} by multiplying \frac{3p^{2}+p-2}{5p-4} by the reciprocal of \frac{3p^{2}-11p+6}{20p^{3}-16p^{2}}.
\frac{4\left(3p-2\right)\left(5p-4\right)\left(p+1\right)p^{2}}{\left(p-3\right)\left(3p-2\right)\left(5p-4\right)}
Factor the expressions that are not already factored.
\frac{4\left(p+1\right)p^{2}}{p-3}
Cancel out \left(3p-2\right)\left(5p-4\right) in both numerator and denominator.
\frac{4p^{3}+4p^{2}}{p-3}
Expand the expression.
\frac{\left(3p^{2}+p-2\right)\left(20p^{3}-16p^{2}\right)}{\left(5p-4\right)\left(3p^{2}-11p+6\right)}
Divide \frac{3p^{2}+p-2}{5p-4} by \frac{3p^{2}-11p+6}{20p^{3}-16p^{2}} by multiplying \frac{3p^{2}+p-2}{5p-4} by the reciprocal of \frac{3p^{2}-11p+6}{20p^{3}-16p^{2}}.
\frac{4\left(3p-2\right)\left(5p-4\right)\left(p+1\right)p^{2}}{\left(p-3\right)\left(3p-2\right)\left(5p-4\right)}
Factor the expressions that are not already factored.
\frac{4\left(p+1\right)p^{2}}{p-3}
Cancel out \left(3p-2\right)\left(5p-4\right) in both numerator and denominator.
\frac{4p^{3}+4p^{2}}{p-3}
Expand the expression.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}