Evaluate
2+\frac{2}{n}
Expand
2+\frac{2}{n}
Share
Copied to clipboard
\frac{3n^{2}+3n-\left(3n-2\right)\left(n+1\right)}{n}
Use the distributive property to multiply 3n by n+1.
\frac{3n^{2}+3n-\left(3n^{2}+3n-2n-2\right)}{n}
Apply the distributive property by multiplying each term of 3n-2 by each term of n+1.
\frac{3n^{2}+3n-\left(3n^{2}+n-2\right)}{n}
Combine 3n and -2n to get n.
\frac{3n^{2}+3n-3n^{2}-n-\left(-2\right)}{n}
To find the opposite of 3n^{2}+n-2, find the opposite of each term.
\frac{3n^{2}+3n-3n^{2}-n+2}{n}
The opposite of -2 is 2.
\frac{3n-n+2}{n}
Combine 3n^{2} and -3n^{2} to get 0.
\frac{2n+2}{n}
Combine 3n and -n to get 2n.
\frac{3n^{2}+3n-\left(3n-2\right)\left(n+1\right)}{n}
Use the distributive property to multiply 3n by n+1.
\frac{3n^{2}+3n-\left(3n^{2}+3n-2n-2\right)}{n}
Apply the distributive property by multiplying each term of 3n-2 by each term of n+1.
\frac{3n^{2}+3n-\left(3n^{2}+n-2\right)}{n}
Combine 3n and -2n to get n.
\frac{3n^{2}+3n-3n^{2}-n-\left(-2\right)}{n}
To find the opposite of 3n^{2}+n-2, find the opposite of each term.
\frac{3n^{2}+3n-3n^{2}-n+2}{n}
The opposite of -2 is 2.
\frac{3n-n+2}{n}
Combine 3n^{2} and -3n^{2} to get 0.
\frac{2n+2}{n}
Combine 3n and -n to get 2n.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}