Solve for n
n = \frac{\sqrt{4945} + 23}{16} \approx 5.832543373
n=\frac{23-\sqrt{4945}}{16}\approx -2.957543373
Share
Copied to clipboard
\left(3n-54\right)\times 3n+3\left(n-18\right)\left(n-1\right)\left(-\frac{1}{3}\right)=\left(3n-3\right)\left(-40\right)
Variable n cannot be equal to any of the values 1,18 since division by zero is not defined. Multiply both sides of the equation by 3\left(n-18\right)\left(n-1\right), the least common multiple of n-1,3,n-18.
\left(9n-162\right)n+3\left(n-18\right)\left(n-1\right)\left(-\frac{1}{3}\right)=\left(3n-3\right)\left(-40\right)
Use the distributive property to multiply 3n-54 by 3.
9n^{2}-162n+3\left(n-18\right)\left(n-1\right)\left(-\frac{1}{3}\right)=\left(3n-3\right)\left(-40\right)
Use the distributive property to multiply 9n-162 by n.
9n^{2}-162n-\left(n-18\right)\left(n-1\right)=\left(3n-3\right)\left(-40\right)
Multiply 3 and -\frac{1}{3} to get -1.
9n^{2}-162n+\left(-n+18\right)\left(n-1\right)=\left(3n-3\right)\left(-40\right)
Use the distributive property to multiply -1 by n-18.
9n^{2}-162n-n^{2}+19n-18=\left(3n-3\right)\left(-40\right)
Use the distributive property to multiply -n+18 by n-1 and combine like terms.
8n^{2}-162n+19n-18=\left(3n-3\right)\left(-40\right)
Combine 9n^{2} and -n^{2} to get 8n^{2}.
8n^{2}-143n-18=\left(3n-3\right)\left(-40\right)
Combine -162n and 19n to get -143n.
8n^{2}-143n-18=-120n+120
Use the distributive property to multiply 3n-3 by -40.
8n^{2}-143n-18+120n=120
Add 120n to both sides.
8n^{2}-23n-18=120
Combine -143n and 120n to get -23n.
8n^{2}-23n-18-120=0
Subtract 120 from both sides.
8n^{2}-23n-138=0
Subtract 120 from -18 to get -138.
n=\frac{-\left(-23\right)±\sqrt{\left(-23\right)^{2}-4\times 8\left(-138\right)}}{2\times 8}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 8 for a, -23 for b, and -138 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
n=\frac{-\left(-23\right)±\sqrt{529-4\times 8\left(-138\right)}}{2\times 8}
Square -23.
n=\frac{-\left(-23\right)±\sqrt{529-32\left(-138\right)}}{2\times 8}
Multiply -4 times 8.
n=\frac{-\left(-23\right)±\sqrt{529+4416}}{2\times 8}
Multiply -32 times -138.
n=\frac{-\left(-23\right)±\sqrt{4945}}{2\times 8}
Add 529 to 4416.
n=\frac{23±\sqrt{4945}}{2\times 8}
The opposite of -23 is 23.
n=\frac{23±\sqrt{4945}}{16}
Multiply 2 times 8.
n=\frac{\sqrt{4945}+23}{16}
Now solve the equation n=\frac{23±\sqrt{4945}}{16} when ± is plus. Add 23 to \sqrt{4945}.
n=\frac{23-\sqrt{4945}}{16}
Now solve the equation n=\frac{23±\sqrt{4945}}{16} when ± is minus. Subtract \sqrt{4945} from 23.
n=\frac{\sqrt{4945}+23}{16} n=\frac{23-\sqrt{4945}}{16}
The equation is now solved.
\left(3n-54\right)\times 3n+3\left(n-18\right)\left(n-1\right)\left(-\frac{1}{3}\right)=\left(3n-3\right)\left(-40\right)
Variable n cannot be equal to any of the values 1,18 since division by zero is not defined. Multiply both sides of the equation by 3\left(n-18\right)\left(n-1\right), the least common multiple of n-1,3,n-18.
\left(9n-162\right)n+3\left(n-18\right)\left(n-1\right)\left(-\frac{1}{3}\right)=\left(3n-3\right)\left(-40\right)
Use the distributive property to multiply 3n-54 by 3.
9n^{2}-162n+3\left(n-18\right)\left(n-1\right)\left(-\frac{1}{3}\right)=\left(3n-3\right)\left(-40\right)
Use the distributive property to multiply 9n-162 by n.
9n^{2}-162n-\left(n-18\right)\left(n-1\right)=\left(3n-3\right)\left(-40\right)
Multiply 3 and -\frac{1}{3} to get -1.
9n^{2}-162n+\left(-n+18\right)\left(n-1\right)=\left(3n-3\right)\left(-40\right)
Use the distributive property to multiply -1 by n-18.
9n^{2}-162n-n^{2}+19n-18=\left(3n-3\right)\left(-40\right)
Use the distributive property to multiply -n+18 by n-1 and combine like terms.
8n^{2}-162n+19n-18=\left(3n-3\right)\left(-40\right)
Combine 9n^{2} and -n^{2} to get 8n^{2}.
8n^{2}-143n-18=\left(3n-3\right)\left(-40\right)
Combine -162n and 19n to get -143n.
8n^{2}-143n-18=-120n+120
Use the distributive property to multiply 3n-3 by -40.
8n^{2}-143n-18+120n=120
Add 120n to both sides.
8n^{2}-23n-18=120
Combine -143n and 120n to get -23n.
8n^{2}-23n=120+18
Add 18 to both sides.
8n^{2}-23n=138
Add 120 and 18 to get 138.
\frac{8n^{2}-23n}{8}=\frac{138}{8}
Divide both sides by 8.
n^{2}-\frac{23}{8}n=\frac{138}{8}
Dividing by 8 undoes the multiplication by 8.
n^{2}-\frac{23}{8}n=\frac{69}{4}
Reduce the fraction \frac{138}{8} to lowest terms by extracting and canceling out 2.
n^{2}-\frac{23}{8}n+\left(-\frac{23}{16}\right)^{2}=\frac{69}{4}+\left(-\frac{23}{16}\right)^{2}
Divide -\frac{23}{8}, the coefficient of the x term, by 2 to get -\frac{23}{16}. Then add the square of -\frac{23}{16} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
n^{2}-\frac{23}{8}n+\frac{529}{256}=\frac{69}{4}+\frac{529}{256}
Square -\frac{23}{16} by squaring both the numerator and the denominator of the fraction.
n^{2}-\frac{23}{8}n+\frac{529}{256}=\frac{4945}{256}
Add \frac{69}{4} to \frac{529}{256} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(n-\frac{23}{16}\right)^{2}=\frac{4945}{256}
Factor n^{2}-\frac{23}{8}n+\frac{529}{256}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(n-\frac{23}{16}\right)^{2}}=\sqrt{\frac{4945}{256}}
Take the square root of both sides of the equation.
n-\frac{23}{16}=\frac{\sqrt{4945}}{16} n-\frac{23}{16}=-\frac{\sqrt{4945}}{16}
Simplify.
n=\frac{\sqrt{4945}+23}{16} n=\frac{23-\sqrt{4945}}{16}
Add \frac{23}{16} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}