Evaluate
\frac{3n^{2}-7n+15}{\left(n-4\right)\left(n+3\right)}
Differentiate w.r.t. n
\frac{4n^{2}-102n+99}{n^{4}-2n^{3}-23n^{2}+24n+144}
Share
Copied to clipboard
\frac{3n\left(n-4\right)}{\left(n-4\right)\left(n+3\right)}+\frac{5\left(n+3\right)}{\left(n-4\right)\left(n+3\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of n+3 and n-4 is \left(n-4\right)\left(n+3\right). Multiply \frac{3n}{n+3} times \frac{n-4}{n-4}. Multiply \frac{5}{n-4} times \frac{n+3}{n+3}.
\frac{3n\left(n-4\right)+5\left(n+3\right)}{\left(n-4\right)\left(n+3\right)}
Since \frac{3n\left(n-4\right)}{\left(n-4\right)\left(n+3\right)} and \frac{5\left(n+3\right)}{\left(n-4\right)\left(n+3\right)} have the same denominator, add them by adding their numerators.
\frac{3n^{2}-12n+5n+15}{\left(n-4\right)\left(n+3\right)}
Do the multiplications in 3n\left(n-4\right)+5\left(n+3\right).
\frac{3n^{2}-7n+15}{\left(n-4\right)\left(n+3\right)}
Combine like terms in 3n^{2}-12n+5n+15.
\frac{3n^{2}-7n+15}{n^{2}-n-12}
Expand \left(n-4\right)\left(n+3\right).
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}