Skip to main content
Solve for n
Tick mark Image

Similar Problems from Web Search

Share

3n^{2}-2n-512=0
Variable n cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 5n.
n=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\times 3\left(-512\right)}}{2\times 3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3 for a, -2 for b, and -512 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
n=\frac{-\left(-2\right)±\sqrt{4-4\times 3\left(-512\right)}}{2\times 3}
Square -2.
n=\frac{-\left(-2\right)±\sqrt{4-12\left(-512\right)}}{2\times 3}
Multiply -4 times 3.
n=\frac{-\left(-2\right)±\sqrt{4+6144}}{2\times 3}
Multiply -12 times -512.
n=\frac{-\left(-2\right)±\sqrt{6148}}{2\times 3}
Add 4 to 6144.
n=\frac{-\left(-2\right)±2\sqrt{1537}}{2\times 3}
Take the square root of 6148.
n=\frac{2±2\sqrt{1537}}{2\times 3}
The opposite of -2 is 2.
n=\frac{2±2\sqrt{1537}}{6}
Multiply 2 times 3.
n=\frac{2\sqrt{1537}+2}{6}
Now solve the equation n=\frac{2±2\sqrt{1537}}{6} when ± is plus. Add 2 to 2\sqrt{1537}.
n=\frac{\sqrt{1537}+1}{3}
Divide 2+2\sqrt{1537} by 6.
n=\frac{2-2\sqrt{1537}}{6}
Now solve the equation n=\frac{2±2\sqrt{1537}}{6} when ± is minus. Subtract 2\sqrt{1537} from 2.
n=\frac{1-\sqrt{1537}}{3}
Divide 2-2\sqrt{1537} by 6.
n=\frac{\sqrt{1537}+1}{3} n=\frac{1-\sqrt{1537}}{3}
The equation is now solved.
3n^{2}-2n-512=0
Variable n cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 5n.
3n^{2}-2n=512
Add 512 to both sides. Anything plus zero gives itself.
\frac{3n^{2}-2n}{3}=\frac{512}{3}
Divide both sides by 3.
n^{2}-\frac{2}{3}n=\frac{512}{3}
Dividing by 3 undoes the multiplication by 3.
n^{2}-\frac{2}{3}n+\left(-\frac{1}{3}\right)^{2}=\frac{512}{3}+\left(-\frac{1}{3}\right)^{2}
Divide -\frac{2}{3}, the coefficient of the x term, by 2 to get -\frac{1}{3}. Then add the square of -\frac{1}{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
n^{2}-\frac{2}{3}n+\frac{1}{9}=\frac{512}{3}+\frac{1}{9}
Square -\frac{1}{3} by squaring both the numerator and the denominator of the fraction.
n^{2}-\frac{2}{3}n+\frac{1}{9}=\frac{1537}{9}
Add \frac{512}{3} to \frac{1}{9} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(n-\frac{1}{3}\right)^{2}=\frac{1537}{9}
Factor n^{2}-\frac{2}{3}n+\frac{1}{9}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(n-\frac{1}{3}\right)^{2}}=\sqrt{\frac{1537}{9}}
Take the square root of both sides of the equation.
n-\frac{1}{3}=\frac{\sqrt{1537}}{3} n-\frac{1}{3}=-\frac{\sqrt{1537}}{3}
Simplify.
n=\frac{\sqrt{1537}+1}{3} n=\frac{1-\sqrt{1537}}{3}
Add \frac{1}{3} to both sides of the equation.