Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{3m-2}{10m^{2}-1}-\frac{6m+5}{\left(2m-1\right)\left(4m-1\right)}
Factor 8m^{2}-6m+1.
\frac{\left(3m-2\right)\left(2m-1\right)\left(4m-1\right)}{\left(2m-1\right)\left(4m-1\right)\left(10m^{2}-1\right)}-\frac{\left(6m+5\right)\left(10m^{2}-1\right)}{\left(2m-1\right)\left(4m-1\right)\left(10m^{2}-1\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 10m^{2}-1 and \left(2m-1\right)\left(4m-1\right) is \left(2m-1\right)\left(4m-1\right)\left(10m^{2}-1\right). Multiply \frac{3m-2}{10m^{2}-1} times \frac{\left(2m-1\right)\left(4m-1\right)}{\left(2m-1\right)\left(4m-1\right)}. Multiply \frac{6m+5}{\left(2m-1\right)\left(4m-1\right)} times \frac{10m^{2}-1}{10m^{2}-1}.
\frac{\left(3m-2\right)\left(2m-1\right)\left(4m-1\right)-\left(6m+5\right)\left(10m^{2}-1\right)}{\left(2m-1\right)\left(4m-1\right)\left(10m^{2}-1\right)}
Since \frac{\left(3m-2\right)\left(2m-1\right)\left(4m-1\right)}{\left(2m-1\right)\left(4m-1\right)\left(10m^{2}-1\right)} and \frac{\left(6m+5\right)\left(10m^{2}-1\right)}{\left(2m-1\right)\left(4m-1\right)\left(10m^{2}-1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{24m^{3}-18m^{2}+3m-16m^{2}+12m-2-60m^{3}+6m-50m^{2}+5}{\left(2m-1\right)\left(4m-1\right)\left(10m^{2}-1\right)}
Do the multiplications in \left(3m-2\right)\left(2m-1\right)\left(4m-1\right)-\left(6m+5\right)\left(10m^{2}-1\right).
\frac{-36m^{3}-84m^{2}+21m+3}{\left(2m-1\right)\left(4m-1\right)\left(10m^{2}-1\right)}
Combine like terms in 24m^{3}-18m^{2}+3m-16m^{2}+12m-2-60m^{3}+6m-50m^{2}+5.
\frac{-36m^{3}-84m^{2}+21m+3}{80m^{4}-60m^{3}+2m^{2}+6m-1}
Expand \left(2m-1\right)\left(4m-1\right)\left(10m^{2}-1\right).
\frac{3m-2}{10m^{2}-1}-\frac{6m+5}{\left(2m-1\right)\left(4m-1\right)}
Factor 8m^{2}-6m+1.
\frac{\left(3m-2\right)\left(2m-1\right)\left(4m-1\right)}{\left(2m-1\right)\left(4m-1\right)\left(10m^{2}-1\right)}-\frac{\left(6m+5\right)\left(10m^{2}-1\right)}{\left(2m-1\right)\left(4m-1\right)\left(10m^{2}-1\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 10m^{2}-1 and \left(2m-1\right)\left(4m-1\right) is \left(2m-1\right)\left(4m-1\right)\left(10m^{2}-1\right). Multiply \frac{3m-2}{10m^{2}-1} times \frac{\left(2m-1\right)\left(4m-1\right)}{\left(2m-1\right)\left(4m-1\right)}. Multiply \frac{6m+5}{\left(2m-1\right)\left(4m-1\right)} times \frac{10m^{2}-1}{10m^{2}-1}.
\frac{\left(3m-2\right)\left(2m-1\right)\left(4m-1\right)-\left(6m+5\right)\left(10m^{2}-1\right)}{\left(2m-1\right)\left(4m-1\right)\left(10m^{2}-1\right)}
Since \frac{\left(3m-2\right)\left(2m-1\right)\left(4m-1\right)}{\left(2m-1\right)\left(4m-1\right)\left(10m^{2}-1\right)} and \frac{\left(6m+5\right)\left(10m^{2}-1\right)}{\left(2m-1\right)\left(4m-1\right)\left(10m^{2}-1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{24m^{3}-18m^{2}+3m-16m^{2}+12m-2-60m^{3}+6m-50m^{2}+5}{\left(2m-1\right)\left(4m-1\right)\left(10m^{2}-1\right)}
Do the multiplications in \left(3m-2\right)\left(2m-1\right)\left(4m-1\right)-\left(6m+5\right)\left(10m^{2}-1\right).
\frac{-36m^{3}-84m^{2}+21m+3}{\left(2m-1\right)\left(4m-1\right)\left(10m^{2}-1\right)}
Combine like terms in 24m^{3}-18m^{2}+3m-16m^{2}+12m-2-60m^{3}+6m-50m^{2}+5.
\frac{-36m^{3}-84m^{2}+21m+3}{80m^{4}-60m^{3}+2m^{2}+6m-1}
Expand \left(2m-1\right)\left(4m-1\right)\left(10m^{2}-1\right).