Evaluate
\frac{15\left(m^{2}-3\right)}{m\left(5m+3\right)}
Expand
\frac{15\left(m^{2}-3\right)}{m\left(5m+3\right)}
Quiz
Polynomial
5 problems similar to:
\frac { 3 m - ( \frac { 9 } { m } ) } { m + \frac { 3 } { 5 } }
Share
Copied to clipboard
\frac{\frac{3mm}{m}-\frac{9}{m}}{m+\frac{3}{5}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 3m times \frac{m}{m}.
\frac{\frac{3mm-9}{m}}{m+\frac{3}{5}}
Since \frac{3mm}{m} and \frac{9}{m} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{3m^{2}-9}{m}}{m+\frac{3}{5}}
Do the multiplications in 3mm-9.
\frac{3m^{2}-9}{m\left(m+\frac{3}{5}\right)}
Express \frac{\frac{3m^{2}-9}{m}}{m+\frac{3}{5}} as a single fraction.
\frac{3m^{2}-9}{m^{2}+m\times \frac{3}{5}}
Use the distributive property to multiply m by m+\frac{3}{5}.
\frac{\frac{3mm}{m}-\frac{9}{m}}{m+\frac{3}{5}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 3m times \frac{m}{m}.
\frac{\frac{3mm-9}{m}}{m+\frac{3}{5}}
Since \frac{3mm}{m} and \frac{9}{m} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{3m^{2}-9}{m}}{m+\frac{3}{5}}
Do the multiplications in 3mm-9.
\frac{3m^{2}-9}{m\left(m+\frac{3}{5}\right)}
Express \frac{\frac{3m^{2}-9}{m}}{m+\frac{3}{5}} as a single fraction.
\frac{3m^{2}-9}{m^{2}+m\times \frac{3}{5}}
Use the distributive property to multiply m by m+\frac{3}{5}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}