Solve for p
p=\frac{3m^{2}}{2q}
m\neq 0\text{ and }q\neq 0
Solve for m
m=\frac{\sqrt{6pq}}{3}
m=-\frac{\sqrt{6pq}}{3}\text{, }\left(q<0\text{ and }p<0\right)\text{ or }\left(p>0\text{ and }q>0\right)
Share
Copied to clipboard
m\times 3m=p\times 2q
Variable p cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by mp, the least common multiple of p,m.
m^{2}\times 3=p\times 2q
Multiply m and m to get m^{2}.
p\times 2q=m^{2}\times 3
Swap sides so that all variable terms are on the left hand side.
2qp=3m^{2}
The equation is in standard form.
\frac{2qp}{2q}=\frac{3m^{2}}{2q}
Divide both sides by 2q.
p=\frac{3m^{2}}{2q}
Dividing by 2q undoes the multiplication by 2q.
p=\frac{3m^{2}}{2q}\text{, }p\neq 0
Variable p cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}