Evaluate
\frac{1}{2\left(3m-1\right)}
Expand
\frac{3}{2\left(9m-3\right)}
Quiz
Polynomial
5 problems similar to:
\frac { 3 m } { 9 m ^ { 2 } - 1 } - \frac { 1 } { 2 ( 3 m + 1 ) }
Share
Copied to clipboard
\frac{3m}{\left(3m-1\right)\left(3m+1\right)}-\frac{1}{2\left(3m+1\right)}
Factor 9m^{2}-1.
\frac{2\times 3m}{2\left(3m-1\right)\left(3m+1\right)}-\frac{3m-1}{2\left(3m-1\right)\left(3m+1\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(3m-1\right)\left(3m+1\right) and 2\left(3m+1\right) is 2\left(3m-1\right)\left(3m+1\right). Multiply \frac{3m}{\left(3m-1\right)\left(3m+1\right)} times \frac{2}{2}. Multiply \frac{1}{2\left(3m+1\right)} times \frac{3m-1}{3m-1}.
\frac{2\times 3m-\left(3m-1\right)}{2\left(3m-1\right)\left(3m+1\right)}
Since \frac{2\times 3m}{2\left(3m-1\right)\left(3m+1\right)} and \frac{3m-1}{2\left(3m-1\right)\left(3m+1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{6m-3m+1}{2\left(3m-1\right)\left(3m+1\right)}
Do the multiplications in 2\times 3m-\left(3m-1\right).
\frac{3m+1}{2\left(3m-1\right)\left(3m+1\right)}
Combine like terms in 6m-3m+1.
\frac{1}{2\left(3m-1\right)}
Cancel out 3m+1 in both numerator and denominator.
\frac{1}{6m-2}
Expand 2\left(3m-1\right).
\frac{3m}{\left(3m-1\right)\left(3m+1\right)}-\frac{1}{2\left(3m+1\right)}
Factor 9m^{2}-1.
\frac{2\times 3m}{2\left(3m-1\right)\left(3m+1\right)}-\frac{3m-1}{2\left(3m-1\right)\left(3m+1\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(3m-1\right)\left(3m+1\right) and 2\left(3m+1\right) is 2\left(3m-1\right)\left(3m+1\right). Multiply \frac{3m}{\left(3m-1\right)\left(3m+1\right)} times \frac{2}{2}. Multiply \frac{1}{2\left(3m+1\right)} times \frac{3m-1}{3m-1}.
\frac{2\times 3m-\left(3m-1\right)}{2\left(3m-1\right)\left(3m+1\right)}
Since \frac{2\times 3m}{2\left(3m-1\right)\left(3m+1\right)} and \frac{3m-1}{2\left(3m-1\right)\left(3m+1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{6m-3m+1}{2\left(3m-1\right)\left(3m+1\right)}
Do the multiplications in 2\times 3m-\left(3m-1\right).
\frac{3m+1}{2\left(3m-1\right)\left(3m+1\right)}
Combine like terms in 6m-3m+1.
\frac{1}{2\left(3m-1\right)}
Cancel out 3m+1 in both numerator and denominator.
\frac{1}{6m-2}
Expand 2\left(3m-1\right).
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}