Evaluate
\frac{k\left(7-k\right)}{\left(k-2\right)\left(k+3\right)}
Factor
\frac{k\left(7-k\right)}{\left(k-2\right)\left(k+3\right)}
Share
Copied to clipboard
\frac{3k}{3\left(k-2\right)}-\frac{2k}{k+3}
Factor the expressions that are not already factored in \frac{3k}{3k-6}.
\frac{k}{k-2}-\frac{2k}{k+3}
Cancel out 3 in both numerator and denominator.
\frac{k\left(k+3\right)}{\left(k-2\right)\left(k+3\right)}-\frac{2k\left(k-2\right)}{\left(k-2\right)\left(k+3\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of k-2 and k+3 is \left(k-2\right)\left(k+3\right). Multiply \frac{k}{k-2} times \frac{k+3}{k+3}. Multiply \frac{2k}{k+3} times \frac{k-2}{k-2}.
\frac{k\left(k+3\right)-2k\left(k-2\right)}{\left(k-2\right)\left(k+3\right)}
Since \frac{k\left(k+3\right)}{\left(k-2\right)\left(k+3\right)} and \frac{2k\left(k-2\right)}{\left(k-2\right)\left(k+3\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{k^{2}+3k-2k^{2}+4k}{\left(k-2\right)\left(k+3\right)}
Do the multiplications in k\left(k+3\right)-2k\left(k-2\right).
\frac{-k^{2}+7k}{\left(k-2\right)\left(k+3\right)}
Combine like terms in k^{2}+3k-2k^{2}+4k.
\frac{-k^{2}+7k}{k^{2}+k-6}
Expand \left(k-2\right)\left(k+3\right).
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}