Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\frac{3k}{3\left(k-2\right)}-\frac{2k}{k+3}
Factor the expressions that are not already factored in \frac{3k}{3k-6}.
\frac{k}{k-2}-\frac{2k}{k+3}
Cancel out 3 in both numerator and denominator.
\frac{k\left(k+3\right)}{\left(k-2\right)\left(k+3\right)}-\frac{2k\left(k-2\right)}{\left(k-2\right)\left(k+3\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of k-2 and k+3 is \left(k-2\right)\left(k+3\right). Multiply \frac{k}{k-2} times \frac{k+3}{k+3}. Multiply \frac{2k}{k+3} times \frac{k-2}{k-2}.
\frac{k\left(k+3\right)-2k\left(k-2\right)}{\left(k-2\right)\left(k+3\right)}
Since \frac{k\left(k+3\right)}{\left(k-2\right)\left(k+3\right)} and \frac{2k\left(k-2\right)}{\left(k-2\right)\left(k+3\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{k^{2}+3k-2k^{2}+4k}{\left(k-2\right)\left(k+3\right)}
Do the multiplications in k\left(k+3\right)-2k\left(k-2\right).
\frac{-k^{2}+7k}{\left(k-2\right)\left(k+3\right)}
Combine like terms in k^{2}+3k-2k^{2}+4k.
\frac{-k^{2}+7k}{k^{2}+k-6}
Expand \left(k-2\right)\left(k+3\right).