Evaluate
-\frac{9+k^{2}-6b}{b-3}
y\neq 4\text{ and }|b|\neq 3
Expand
-\frac{6b-k^{2}-9}{3-b}
y\neq 4\text{ and }|b|\neq 3
Graph
Share
Copied to clipboard
\frac{\left(3k^{2}-18b+27\right)\left(3y-12+by-4b\right)}{\left(3y-12\right)\left(9-b^{2}\right)}
Divide \frac{3k^{2}-18b+27}{3y-12} by \frac{9-b^{2}}{3y-12+by-4b} by multiplying \frac{3k^{2}-18b+27}{3y-12} by the reciprocal of \frac{9-b^{2}}{3y-12+by-4b}.
\frac{3\left(y-4\right)\left(b+3\right)\left(k^{2}-6b+9\right)}{3\left(b-3\right)\left(y-4\right)\left(-b-3\right)}
Factor the expressions that are not already factored.
\frac{-3\left(y-4\right)\left(-b-3\right)\left(k^{2}-6b+9\right)}{3\left(b-3\right)\left(y-4\right)\left(-b-3\right)}
Extract the negative sign in 3+b.
\frac{-\left(-6b+k^{2}+9\right)}{b-3}
Cancel out 3\left(y-4\right)\left(-b-3\right) in both numerator and denominator.
\frac{6b-k^{2}-9}{b-3}
Expand the expression.
\frac{\left(3k^{2}-18b+27\right)\left(3y-12+by-4b\right)}{\left(3y-12\right)\left(9-b^{2}\right)}
Divide \frac{3k^{2}-18b+27}{3y-12} by \frac{9-b^{2}}{3y-12+by-4b} by multiplying \frac{3k^{2}-18b+27}{3y-12} by the reciprocal of \frac{9-b^{2}}{3y-12+by-4b}.
\frac{3\left(y-4\right)\left(b+3\right)\left(k^{2}-6b+9\right)}{3\left(b-3\right)\left(y-4\right)\left(-b-3\right)}
Factor the expressions that are not already factored.
\frac{-3\left(y-4\right)\left(-b-3\right)\left(k^{2}-6b+9\right)}{3\left(b-3\right)\left(y-4\right)\left(-b-3\right)}
Extract the negative sign in 3+b.
\frac{-\left(-6b+k^{2}+9\right)}{b-3}
Cancel out 3\left(y-4\right)\left(-b-3\right) in both numerator and denominator.
\frac{6b-k^{2}-9}{b-3}
Expand the expression.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}