Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{3i\times 1+3\left(-1\right)i^{2}}{1+i}
Multiply 3i times 1-i.
\frac{3i\times 1+3\left(-1\right)\left(-1\right)}{1+i}
By definition, i^{2} is -1.
\frac{3+3i}{1+i}
Do the multiplications in 3i\times 1+3\left(-1\right)\left(-1\right). Reorder the terms.
\frac{\left(3+3i\right)\left(1-i\right)}{\left(1+i\right)\left(1-i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, 1-i.
\frac{\left(3+3i\right)\left(1-i\right)}{1^{2}-i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(3+3i\right)\left(1-i\right)}{2}
By definition, i^{2} is -1. Calculate the denominator.
\frac{3\times 1+3\left(-i\right)+3i\times 1+3\left(-1\right)i^{2}}{2}
Multiply complex numbers 3+3i and 1-i like you multiply binomials.
\frac{3\times 1+3\left(-i\right)+3i\times 1+3\left(-1\right)\left(-1\right)}{2}
By definition, i^{2} is -1.
\frac{3-3i+3i+3}{2}
Do the multiplications in 3\times 1+3\left(-i\right)+3i\times 1+3\left(-1\right)\left(-1\right).
\frac{3+3+\left(-3+3\right)i}{2}
Combine the real and imaginary parts in 3-3i+3i+3.
\frac{6}{2}
Do the additions in 3+3+\left(-3+3\right)i.
3
Divide 6 by 2 to get 3.
Re(\frac{3i\times 1+3\left(-1\right)i^{2}}{1+i})
Multiply 3i times 1-i.
Re(\frac{3i\times 1+3\left(-1\right)\left(-1\right)}{1+i})
By definition, i^{2} is -1.
Re(\frac{3+3i}{1+i})
Do the multiplications in 3i\times 1+3\left(-1\right)\left(-1\right). Reorder the terms.
Re(\frac{\left(3+3i\right)\left(1-i\right)}{\left(1+i\right)\left(1-i\right)})
Multiply both numerator and denominator of \frac{3+3i}{1+i} by the complex conjugate of the denominator, 1-i.
Re(\frac{\left(3+3i\right)\left(1-i\right)}{1^{2}-i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(3+3i\right)\left(1-i\right)}{2})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{3\times 1+3\left(-i\right)+3i\times 1+3\left(-1\right)i^{2}}{2})
Multiply complex numbers 3+3i and 1-i like you multiply binomials.
Re(\frac{3\times 1+3\left(-i\right)+3i\times 1+3\left(-1\right)\left(-1\right)}{2})
By definition, i^{2} is -1.
Re(\frac{3-3i+3i+3}{2})
Do the multiplications in 3\times 1+3\left(-i\right)+3i\times 1+3\left(-1\right)\left(-1\right).
Re(\frac{3+3+\left(-3+3\right)i}{2})
Combine the real and imaginary parts in 3-3i+3i+3.
Re(\frac{6}{2})
Do the additions in 3+3+\left(-3+3\right)i.
Re(3)
Divide 6 by 2 to get 3.
3
The real part of 3 is 3.