Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{3i\left(1+i\right)}{\left(1-i\right)\left(1+i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, 1+i.
\frac{3i\left(1+i\right)}{1^{2}-i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{3i\left(1+i\right)}{2}
By definition, i^{2} is -1. Calculate the denominator.
\frac{3i\times 1+3i^{2}}{2}
Multiply 3i times 1+i.
\frac{3i\times 1+3\left(-1\right)}{2}
By definition, i^{2} is -1.
\frac{-3+3i}{2}
Do the multiplications in 3i\times 1+3\left(-1\right). Reorder the terms.
-\frac{3}{2}+\frac{3}{2}i
Divide -3+3i by 2 to get -\frac{3}{2}+\frac{3}{2}i.
Re(\frac{3i\left(1+i\right)}{\left(1-i\right)\left(1+i\right)})
Multiply both numerator and denominator of \frac{3i}{1-i} by the complex conjugate of the denominator, 1+i.
Re(\frac{3i\left(1+i\right)}{1^{2}-i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{3i\left(1+i\right)}{2})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{3i\times 1+3i^{2}}{2})
Multiply 3i times 1+i.
Re(\frac{3i\times 1+3\left(-1\right)}{2})
By definition, i^{2} is -1.
Re(\frac{-3+3i}{2})
Do the multiplications in 3i\times 1+3\left(-1\right). Reorder the terms.
Re(-\frac{3}{2}+\frac{3}{2}i)
Divide -3+3i by 2 to get -\frac{3}{2}+\frac{3}{2}i.
-\frac{3}{2}
The real part of -\frac{3}{2}+\frac{3}{2}i is -\frac{3}{2}.