Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{3\left(-i\right)+4i^{2018}+5i^{2017}+6i^{2016}+7i^{2015}}{1+i}
Calculate i to the power of 2019 and get -i.
\frac{-3i+4i^{2018}+5i^{2017}+6i^{2016}+7i^{2015}}{1+i}
Multiply 3 and -i to get -3i.
\frac{-3i+4\left(-1\right)+5i^{2017}+6i^{2016}+7i^{2015}}{1+i}
Calculate i to the power of 2018 and get -1.
\frac{-3i-4+5i^{2017}+6i^{2016}+7i^{2015}}{1+i}
Multiply 4 and -1 to get -4.
\frac{-3i-4+5i+6i^{2016}+7i^{2015}}{1+i}
Calculate i to the power of 2017 and get i.
\frac{6i^{2016}+7i^{2015}-4+2i}{1+i}
Do the additions in -3i-4+5i.
\frac{6\times 1+7i^{2015}-4+2i}{1+i}
Calculate i to the power of 2016 and get 1.
\frac{6+7i^{2015}-4+2i}{1+i}
Multiply 6 and 1 to get 6.
\frac{7i^{2015}+2+2i}{1+i}
Do the additions in 6-4+2i.
\frac{7\left(-i\right)+2+2i}{1+i}
Calculate i to the power of 2015 and get -i.
\frac{-7i+2+2i}{1+i}
Multiply 7 and -i to get -7i.
\frac{2-5i}{1+i}
Do the additions in -7i+2+2i.
\frac{\left(2-5i\right)\left(1-i\right)}{\left(1+i\right)\left(1-i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, 1-i.
\frac{-3-7i}{2}
Do the multiplications in \frac{\left(2-5i\right)\left(1-i\right)}{\left(1+i\right)\left(1-i\right)}.
-\frac{3}{2}-\frac{7}{2}i
Divide -3-7i by 2 to get -\frac{3}{2}-\frac{7}{2}i.
Re(\frac{3\left(-i\right)+4i^{2018}+5i^{2017}+6i^{2016}+7i^{2015}}{1+i})
Calculate i to the power of 2019 and get -i.
Re(\frac{-3i+4i^{2018}+5i^{2017}+6i^{2016}+7i^{2015}}{1+i})
Multiply 3 and -i to get -3i.
Re(\frac{-3i+4\left(-1\right)+5i^{2017}+6i^{2016}+7i^{2015}}{1+i})
Calculate i to the power of 2018 and get -1.
Re(\frac{-3i-4+5i^{2017}+6i^{2016}+7i^{2015}}{1+i})
Multiply 4 and -1 to get -4.
Re(\frac{-3i-4+5i+6i^{2016}+7i^{2015}}{1+i})
Calculate i to the power of 2017 and get i.
Re(\frac{6i^{2016}+7i^{2015}-4+2i}{1+i})
Do the additions in -3i-4+5i.
Re(\frac{6\times 1+7i^{2015}-4+2i}{1+i})
Calculate i to the power of 2016 and get 1.
Re(\frac{6+7i^{2015}-4+2i}{1+i})
Multiply 6 and 1 to get 6.
Re(\frac{7i^{2015}+2+2i}{1+i})
Do the additions in 6-4+2i.
Re(\frac{7\left(-i\right)+2+2i}{1+i})
Calculate i to the power of 2015 and get -i.
Re(\frac{-7i+2+2i}{1+i})
Multiply 7 and -i to get -7i.
Re(\frac{2-5i}{1+i})
Do the additions in -7i+2+2i.
Re(\frac{\left(2-5i\right)\left(1-i\right)}{\left(1+i\right)\left(1-i\right)})
Multiply both numerator and denominator of \frac{2-5i}{1+i} by the complex conjugate of the denominator, 1-i.
Re(\frac{-3-7i}{2})
Do the multiplications in \frac{\left(2-5i\right)\left(1-i\right)}{\left(1+i\right)\left(1-i\right)}.
Re(-\frac{3}{2}-\frac{7}{2}i)
Divide -3-7i by 2 to get -\frac{3}{2}-\frac{7}{2}i.
-\frac{3}{2}
The real part of -\frac{3}{2}-\frac{7}{2}i is -\frac{3}{2}.