Evaluate
-\frac{3}{2}-\frac{7}{2}i=-1.5-3.5i
Real Part
-\frac{3}{2} = -1\frac{1}{2} = -1.5
Share
Copied to clipboard
\frac{3\left(-i\right)+4i^{2018}+5i^{2017}+6i^{2016}+7i^{2015}}{1+i}
Calculate i to the power of 2019 and get -i.
\frac{-3i+4i^{2018}+5i^{2017}+6i^{2016}+7i^{2015}}{1+i}
Multiply 3 and -i to get -3i.
\frac{-3i+4\left(-1\right)+5i^{2017}+6i^{2016}+7i^{2015}}{1+i}
Calculate i to the power of 2018 and get -1.
\frac{-3i-4+5i^{2017}+6i^{2016}+7i^{2015}}{1+i}
Multiply 4 and -1 to get -4.
\frac{-3i-4+5i+6i^{2016}+7i^{2015}}{1+i}
Calculate i to the power of 2017 and get i.
\frac{6i^{2016}+7i^{2015}-4+2i}{1+i}
Do the additions in -3i-4+5i.
\frac{6\times 1+7i^{2015}-4+2i}{1+i}
Calculate i to the power of 2016 and get 1.
\frac{6+7i^{2015}-4+2i}{1+i}
Multiply 6 and 1 to get 6.
\frac{7i^{2015}+2+2i}{1+i}
Do the additions in 6-4+2i.
\frac{7\left(-i\right)+2+2i}{1+i}
Calculate i to the power of 2015 and get -i.
\frac{-7i+2+2i}{1+i}
Multiply 7 and -i to get -7i.
\frac{2-5i}{1+i}
Do the additions in -7i+2+2i.
\frac{\left(2-5i\right)\left(1-i\right)}{\left(1+i\right)\left(1-i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, 1-i.
\frac{-3-7i}{2}
Do the multiplications in \frac{\left(2-5i\right)\left(1-i\right)}{\left(1+i\right)\left(1-i\right)}.
-\frac{3}{2}-\frac{7}{2}i
Divide -3-7i by 2 to get -\frac{3}{2}-\frac{7}{2}i.
Re(\frac{3\left(-i\right)+4i^{2018}+5i^{2017}+6i^{2016}+7i^{2015}}{1+i})
Calculate i to the power of 2019 and get -i.
Re(\frac{-3i+4i^{2018}+5i^{2017}+6i^{2016}+7i^{2015}}{1+i})
Multiply 3 and -i to get -3i.
Re(\frac{-3i+4\left(-1\right)+5i^{2017}+6i^{2016}+7i^{2015}}{1+i})
Calculate i to the power of 2018 and get -1.
Re(\frac{-3i-4+5i^{2017}+6i^{2016}+7i^{2015}}{1+i})
Multiply 4 and -1 to get -4.
Re(\frac{-3i-4+5i+6i^{2016}+7i^{2015}}{1+i})
Calculate i to the power of 2017 and get i.
Re(\frac{6i^{2016}+7i^{2015}-4+2i}{1+i})
Do the additions in -3i-4+5i.
Re(\frac{6\times 1+7i^{2015}-4+2i}{1+i})
Calculate i to the power of 2016 and get 1.
Re(\frac{6+7i^{2015}-4+2i}{1+i})
Multiply 6 and 1 to get 6.
Re(\frac{7i^{2015}+2+2i}{1+i})
Do the additions in 6-4+2i.
Re(\frac{7\left(-i\right)+2+2i}{1+i})
Calculate i to the power of 2015 and get -i.
Re(\frac{-7i+2+2i}{1+i})
Multiply 7 and -i to get -7i.
Re(\frac{2-5i}{1+i})
Do the additions in -7i+2+2i.
Re(\frac{\left(2-5i\right)\left(1-i\right)}{\left(1+i\right)\left(1-i\right)})
Multiply both numerator and denominator of \frac{2-5i}{1+i} by the complex conjugate of the denominator, 1-i.
Re(\frac{-3-7i}{2})
Do the multiplications in \frac{\left(2-5i\right)\left(1-i\right)}{\left(1+i\right)\left(1-i\right)}.
Re(-\frac{3}{2}-\frac{7}{2}i)
Divide -3-7i by 2 to get -\frac{3}{2}-\frac{7}{2}i.
-\frac{3}{2}
The real part of -\frac{3}{2}-\frac{7}{2}i is -\frac{3}{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}