Evaluate
-\frac{3}{c-d}
Factor
-\frac{3}{c-d}
Share
Copied to clipboard
\frac{3d}{\left(c+d\right)\left(-c+d\right)}-\frac{3c}{\left(c+d\right)\left(c-d\right)}
Factor d^{2}-c^{2}. Factor c^{2}-d^{2}.
\frac{-3d}{\left(c+d\right)\left(c-d\right)}-\frac{3c}{\left(c+d\right)\left(c-d\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(c+d\right)\left(-c+d\right) and \left(c+d\right)\left(c-d\right) is \left(c+d\right)\left(c-d\right). Multiply \frac{3d}{\left(c+d\right)\left(-c+d\right)} times \frac{-1}{-1}.
\frac{-3d-3c}{\left(c+d\right)\left(c-d\right)}
Since \frac{-3d}{\left(c+d\right)\left(c-d\right)} and \frac{3c}{\left(c+d\right)\left(c-d\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{3\left(-c-d\right)}{\left(c+d\right)\left(c-d\right)}
Factor the expressions that are not already factored in \frac{-3d-3c}{\left(c+d\right)\left(c-d\right)}.
\frac{-3\left(c+d\right)}{\left(c+d\right)\left(c-d\right)}
Extract the negative sign in -d-c.
\frac{-3}{c-d}
Cancel out c+d in both numerator and denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}