Skip to main content
Solve for b (complex solution)
Tick mark Image
Solve for b
Tick mark Image
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(x-5\right)\times 3b-\left(2y+3\right)\left(b-y\right)=\left(x-5\right)\left(2y+3\right)
Multiply both sides of the equation by \left(x-5\right)\left(2y+3\right), the least common multiple of 2y+3,x-5.
\left(3x-15\right)b-\left(2y+3\right)\left(b-y\right)=\left(x-5\right)\left(2y+3\right)
Use the distributive property to multiply x-5 by 3.
3xb-15b-\left(2y+3\right)\left(b-y\right)=\left(x-5\right)\left(2y+3\right)
Use the distributive property to multiply 3x-15 by b.
3xb-15b-\left(2yb-2y^{2}+3b-3y\right)=\left(x-5\right)\left(2y+3\right)
Use the distributive property to multiply 2y+3 by b-y.
3xb-15b-2yb+2y^{2}-3b+3y=\left(x-5\right)\left(2y+3\right)
To find the opposite of 2yb-2y^{2}+3b-3y, find the opposite of each term.
3xb-18b-2yb+2y^{2}+3y=\left(x-5\right)\left(2y+3\right)
Combine -15b and -3b to get -18b.
3xb-18b-2yb+2y^{2}+3y=2xy+3x-10y-15
Use the distributive property to multiply x-5 by 2y+3.
3xb-18b-2yb+3y=2xy+3x-10y-15-2y^{2}
Subtract 2y^{2} from both sides.
3xb-18b-2yb=2xy+3x-10y-15-2y^{2}-3y
Subtract 3y from both sides.
3xb-18b-2yb=2xy+3x-13y-15-2y^{2}
Combine -10y and -3y to get -13y.
\left(3x-18-2y\right)b=2xy+3x-13y-15-2y^{2}
Combine all terms containing b.
\left(3x-2y-18\right)b=2xy+3x-2y^{2}-13y-15
The equation is in standard form.
\frac{\left(3x-2y-18\right)b}{3x-2y-18}=\frac{\left(x-y-5\right)\left(2y+3\right)}{3x-2y-18}
Divide both sides by 3x-2y-18.
b=\frac{\left(x-y-5\right)\left(2y+3\right)}{3x-2y-18}
Dividing by 3x-2y-18 undoes the multiplication by 3x-2y-18.
\left(x-5\right)\times 3b-\left(2y+3\right)\left(b-y\right)=\left(x-5\right)\left(2y+3\right)
Multiply both sides of the equation by \left(x-5\right)\left(2y+3\right), the least common multiple of 2y+3,x-5.
\left(3x-15\right)b-\left(2y+3\right)\left(b-y\right)=\left(x-5\right)\left(2y+3\right)
Use the distributive property to multiply x-5 by 3.
3xb-15b-\left(2y+3\right)\left(b-y\right)=\left(x-5\right)\left(2y+3\right)
Use the distributive property to multiply 3x-15 by b.
3xb-15b-\left(2yb-2y^{2}+3b-3y\right)=\left(x-5\right)\left(2y+3\right)
Use the distributive property to multiply 2y+3 by b-y.
3xb-15b-2yb+2y^{2}-3b+3y=\left(x-5\right)\left(2y+3\right)
To find the opposite of 2yb-2y^{2}+3b-3y, find the opposite of each term.
3xb-18b-2yb+2y^{2}+3y=\left(x-5\right)\left(2y+3\right)
Combine -15b and -3b to get -18b.
3xb-18b-2yb+2y^{2}+3y=2xy+3x-10y-15
Use the distributive property to multiply x-5 by 2y+3.
3xb-18b-2yb+3y=2xy+3x-10y-15-2y^{2}
Subtract 2y^{2} from both sides.
3xb-18b-2yb=2xy+3x-10y-15-2y^{2}-3y
Subtract 3y from both sides.
3xb-18b-2yb=2xy+3x-13y-15-2y^{2}
Combine -10y and -3y to get -13y.
\left(3x-18-2y\right)b=2xy+3x-13y-15-2y^{2}
Combine all terms containing b.
\left(3x-2y-18\right)b=2xy+3x-2y^{2}-13y-15
The equation is in standard form.
\frac{\left(3x-2y-18\right)b}{3x-2y-18}=\frac{\left(x-y-5\right)\left(2y+3\right)}{3x-2y-18}
Divide both sides by 3x-2y-18.
b=\frac{\left(x-y-5\right)\left(2y+3\right)}{3x-2y-18}
Dividing by 3x-2y-18 undoes the multiplication by 3x-2y-18.
\left(x-5\right)\times 3b-\left(2y+3\right)\left(b-y\right)=\left(x-5\right)\left(2y+3\right)
Variable x cannot be equal to 5 since division by zero is not defined. Multiply both sides of the equation by \left(x-5\right)\left(2y+3\right), the least common multiple of 2y+3,x-5.
\left(3x-15\right)b-\left(2y+3\right)\left(b-y\right)=\left(x-5\right)\left(2y+3\right)
Use the distributive property to multiply x-5 by 3.
3xb-15b-\left(2y+3\right)\left(b-y\right)=\left(x-5\right)\left(2y+3\right)
Use the distributive property to multiply 3x-15 by b.
3xb-15b-\left(2yb-2y^{2}+3b-3y\right)=\left(x-5\right)\left(2y+3\right)
Use the distributive property to multiply 2y+3 by b-y.
3xb-15b-2yb+2y^{2}-3b+3y=\left(x-5\right)\left(2y+3\right)
To find the opposite of 2yb-2y^{2}+3b-3y, find the opposite of each term.
3xb-18b-2yb+2y^{2}+3y=\left(x-5\right)\left(2y+3\right)
Combine -15b and -3b to get -18b.
3xb-18b-2yb+2y^{2}+3y=2xy+3x-10y-15
Use the distributive property to multiply x-5 by 2y+3.
3xb-18b-2yb+2y^{2}+3y-2xy=3x-10y-15
Subtract 2xy from both sides.
3xb-18b-2yb+2y^{2}+3y-2xy-3x=-10y-15
Subtract 3x from both sides.
3xb-2yb+2y^{2}+3y-2xy-3x=-10y-15+18b
Add 18b to both sides.
3xb+2y^{2}+3y-2xy-3x=-10y-15+18b+2yb
Add 2yb to both sides.
3xb+3y-2xy-3x=-10y-15+18b+2yb-2y^{2}
Subtract 2y^{2} from both sides.
3xb-2xy-3x=-10y-15+18b+2yb-2y^{2}-3y
Subtract 3y from both sides.
3xb-2xy-3x=-13y-15+18b+2yb-2y^{2}
Combine -10y and -3y to get -13y.
\left(3b-2y-3\right)x=-13y-15+18b+2yb-2y^{2}
Combine all terms containing x.
\left(-2y+3b-3\right)x=-2y^{2}+2by-13y+18b-15
The equation is in standard form.
\frac{\left(-2y+3b-3\right)x}{-2y+3b-3}=\frac{-2y^{2}+2by-13y+18b-15}{-2y+3b-3}
Divide both sides by -2y+3b-3.
x=\frac{-2y^{2}+2by-13y+18b-15}{-2y+3b-3}
Dividing by -2y+3b-3 undoes the multiplication by -2y+3b-3.
x=\frac{-2y^{2}+2by-13y+18b-15}{-2y+3b-3}\text{, }x\neq 5
Variable x cannot be equal to 5.