Solve for x (complex solution)
x=b^{2}-40
b\neq -2\sqrt{10}\text{ and }b\neq 2\sqrt{10}
Solve for x
x=b^{2}-40
|b|\neq 2\sqrt{10}
Solve for b (complex solution)
b=-\sqrt{x+40}
b=\sqrt{x+40}\text{, }x\neq 0
Solve for b
b=\sqrt{x+40}
b=-\sqrt{x+40}\text{, }x\geq -40\text{ and }x\neq 0
Graph
Share
Copied to clipboard
3\times 3b^{2}+3x\left(-3\right)=360
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 3x, the least common multiple of x,3x.
9b^{2}+3x\left(-3\right)=360
Multiply 3 and 3 to get 9.
9b^{2}-9x=360
Multiply 3 and -3 to get -9.
-9x=360-9b^{2}
Subtract 9b^{2} from both sides.
\frac{-9x}{-9}=\frac{360-9b^{2}}{-9}
Divide both sides by -9.
x=\frac{360-9b^{2}}{-9}
Dividing by -9 undoes the multiplication by -9.
x=b^{2}-40
Divide 360-9b^{2} by -9.
x=b^{2}-40\text{, }x\neq 0
Variable x cannot be equal to 0.
3\times 3b^{2}+3x\left(-3\right)=360
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 3x, the least common multiple of x,3x.
9b^{2}+3x\left(-3\right)=360
Multiply 3 and 3 to get 9.
9b^{2}-9x=360
Multiply 3 and -3 to get -9.
-9x=360-9b^{2}
Subtract 9b^{2} from both sides.
\frac{-9x}{-9}=\frac{360-9b^{2}}{-9}
Divide both sides by -9.
x=\frac{360-9b^{2}}{-9}
Dividing by -9 undoes the multiplication by -9.
x=b^{2}-40
Divide 360-9b^{2} by -9.
x=b^{2}-40\text{, }x\neq 0
Variable x cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}