Evaluate
\frac{x^{2}+3ax+9a^{2}}{ax}
Expand
\frac{x^{2}+3ax+9a^{2}}{ax}
Graph
Share
Copied to clipboard
\frac{3a\left(x-9a\right)}{x\left(x-3a\right)}-\frac{3a^{2}-x^{2}}{a\left(x-3a\right)}
Factor x^{2}-3ax. Factor ax-3a^{2}.
\frac{3a\left(x-9a\right)a}{ax\left(x-3a\right)}-\frac{\left(3a^{2}-x^{2}\right)x}{ax\left(x-3a\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x\left(x-3a\right) and a\left(x-3a\right) is ax\left(x-3a\right). Multiply \frac{3a\left(x-9a\right)}{x\left(x-3a\right)} times \frac{a}{a}. Multiply \frac{3a^{2}-x^{2}}{a\left(x-3a\right)} times \frac{x}{x}.
\frac{3a\left(x-9a\right)a-\left(3a^{2}-x^{2}\right)x}{ax\left(x-3a\right)}
Since \frac{3a\left(x-9a\right)a}{ax\left(x-3a\right)} and \frac{\left(3a^{2}-x^{2}\right)x}{ax\left(x-3a\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{3a^{2}x-27a^{3}-3a^{2}x+x^{3}}{ax\left(x-3a\right)}
Do the multiplications in 3a\left(x-9a\right)a-\left(3a^{2}-x^{2}\right)x.
\frac{-27a^{3}+x^{3}}{ax\left(x-3a\right)}
Combine like terms in 3a^{2}x-27a^{3}-3a^{2}x+x^{3}.
\frac{\left(-x+3a\right)\left(-x^{2}-3ax-9a^{2}\right)}{ax\left(x-3a\right)}
Factor the expressions that are not already factored in \frac{-27a^{3}+x^{3}}{ax\left(x-3a\right)}.
\frac{-\left(x-3a\right)\left(-x^{2}-3ax-9a^{2}\right)}{ax\left(x-3a\right)}
Extract the negative sign in 3a-x.
\frac{-\left(-x^{2}-3ax-9a^{2}\right)}{ax}
Cancel out x-3a in both numerator and denominator.
\frac{x^{2}+3ax+9a^{2}}{ax}
To find the opposite of -x^{2}-3ax-9a^{2}, find the opposite of each term.
\frac{3a\left(x-9a\right)}{x\left(x-3a\right)}-\frac{3a^{2}-x^{2}}{a\left(x-3a\right)}
Factor x^{2}-3ax. Factor ax-3a^{2}.
\frac{3a\left(x-9a\right)a}{ax\left(x-3a\right)}-\frac{\left(3a^{2}-x^{2}\right)x}{ax\left(x-3a\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x\left(x-3a\right) and a\left(x-3a\right) is ax\left(x-3a\right). Multiply \frac{3a\left(x-9a\right)}{x\left(x-3a\right)} times \frac{a}{a}. Multiply \frac{3a^{2}-x^{2}}{a\left(x-3a\right)} times \frac{x}{x}.
\frac{3a\left(x-9a\right)a-\left(3a^{2}-x^{2}\right)x}{ax\left(x-3a\right)}
Since \frac{3a\left(x-9a\right)a}{ax\left(x-3a\right)} and \frac{\left(3a^{2}-x^{2}\right)x}{ax\left(x-3a\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{3a^{2}x-27a^{3}-3a^{2}x+x^{3}}{ax\left(x-3a\right)}
Do the multiplications in 3a\left(x-9a\right)a-\left(3a^{2}-x^{2}\right)x.
\frac{-27a^{3}+x^{3}}{ax\left(x-3a\right)}
Combine like terms in 3a^{2}x-27a^{3}-3a^{2}x+x^{3}.
\frac{\left(-x+3a\right)\left(-x^{2}-3ax-9a^{2}\right)}{ax\left(x-3a\right)}
Factor the expressions that are not already factored in \frac{-27a^{3}+x^{3}}{ax\left(x-3a\right)}.
\frac{-\left(x-3a\right)\left(-x^{2}-3ax-9a^{2}\right)}{ax\left(x-3a\right)}
Extract the negative sign in 3a-x.
\frac{-\left(-x^{2}-3ax-9a^{2}\right)}{ax}
Cancel out x-3a in both numerator and denominator.
\frac{x^{2}+3ax+9a^{2}}{ax}
To find the opposite of -x^{2}-3ax-9a^{2}, find the opposite of each term.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}