Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{3a\left(x-9a\right)}{x\left(x-3a\right)}-\frac{3a^{2}-x^{2}}{a\left(x-3a\right)}
Factor x^{2}-3ax. Factor ax-3a^{2}.
\frac{3a\left(x-9a\right)a}{ax\left(x-3a\right)}-\frac{\left(3a^{2}-x^{2}\right)x}{ax\left(x-3a\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x\left(x-3a\right) and a\left(x-3a\right) is ax\left(x-3a\right). Multiply \frac{3a\left(x-9a\right)}{x\left(x-3a\right)} times \frac{a}{a}. Multiply \frac{3a^{2}-x^{2}}{a\left(x-3a\right)} times \frac{x}{x}.
\frac{3a\left(x-9a\right)a-\left(3a^{2}-x^{2}\right)x}{ax\left(x-3a\right)}
Since \frac{3a\left(x-9a\right)a}{ax\left(x-3a\right)} and \frac{\left(3a^{2}-x^{2}\right)x}{ax\left(x-3a\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{3a^{2}x-27a^{3}-3a^{2}x+x^{3}}{ax\left(x-3a\right)}
Do the multiplications in 3a\left(x-9a\right)a-\left(3a^{2}-x^{2}\right)x.
\frac{-27a^{3}+x^{3}}{ax\left(x-3a\right)}
Combine like terms in 3a^{2}x-27a^{3}-3a^{2}x+x^{3}.
\frac{\left(-x+3a\right)\left(-x^{2}-3ax-9a^{2}\right)}{ax\left(x-3a\right)}
Factor the expressions that are not already factored in \frac{-27a^{3}+x^{3}}{ax\left(x-3a\right)}.
\frac{-\left(x-3a\right)\left(-x^{2}-3ax-9a^{2}\right)}{ax\left(x-3a\right)}
Extract the negative sign in 3a-x.
\frac{-\left(-x^{2}-3ax-9a^{2}\right)}{ax}
Cancel out x-3a in both numerator and denominator.
\frac{x^{2}+3ax+9a^{2}}{ax}
To find the opposite of -x^{2}-3ax-9a^{2}, find the opposite of each term.
\frac{3a\left(x-9a\right)}{x\left(x-3a\right)}-\frac{3a^{2}-x^{2}}{a\left(x-3a\right)}
Factor x^{2}-3ax. Factor ax-3a^{2}.
\frac{3a\left(x-9a\right)a}{ax\left(x-3a\right)}-\frac{\left(3a^{2}-x^{2}\right)x}{ax\left(x-3a\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x\left(x-3a\right) and a\left(x-3a\right) is ax\left(x-3a\right). Multiply \frac{3a\left(x-9a\right)}{x\left(x-3a\right)} times \frac{a}{a}. Multiply \frac{3a^{2}-x^{2}}{a\left(x-3a\right)} times \frac{x}{x}.
\frac{3a\left(x-9a\right)a-\left(3a^{2}-x^{2}\right)x}{ax\left(x-3a\right)}
Since \frac{3a\left(x-9a\right)a}{ax\left(x-3a\right)} and \frac{\left(3a^{2}-x^{2}\right)x}{ax\left(x-3a\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{3a^{2}x-27a^{3}-3a^{2}x+x^{3}}{ax\left(x-3a\right)}
Do the multiplications in 3a\left(x-9a\right)a-\left(3a^{2}-x^{2}\right)x.
\frac{-27a^{3}+x^{3}}{ax\left(x-3a\right)}
Combine like terms in 3a^{2}x-27a^{3}-3a^{2}x+x^{3}.
\frac{\left(-x+3a\right)\left(-x^{2}-3ax-9a^{2}\right)}{ax\left(x-3a\right)}
Factor the expressions that are not already factored in \frac{-27a^{3}+x^{3}}{ax\left(x-3a\right)}.
\frac{-\left(x-3a\right)\left(-x^{2}-3ax-9a^{2}\right)}{ax\left(x-3a\right)}
Extract the negative sign in 3a-x.
\frac{-\left(-x^{2}-3ax-9a^{2}\right)}{ax}
Cancel out x-3a in both numerator and denominator.
\frac{x^{2}+3ax+9a^{2}}{ax}
To find the opposite of -x^{2}-3ax-9a^{2}, find the opposite of each term.