Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. a
Tick mark Image

Similar Problems from Web Search

Share

\frac{3a}{a^{2}-9}-\frac{2b}{b\left(a+3\right)}-\frac{b}{ab-3b}
Factor the expressions that are not already factored in \frac{2b}{ab+3b}.
\frac{3a}{a^{2}-9}-\frac{2}{a+3}-\frac{b}{ab-3b}
Cancel out b in both numerator and denominator.
\frac{3a}{a^{2}-9}-\frac{2}{a+3}-\frac{b}{b\left(a-3\right)}
Factor the expressions that are not already factored in \frac{b}{ab-3b}.
\frac{3a}{a^{2}-9}-\frac{2}{a+3}-\frac{1}{a-3}
Cancel out b in both numerator and denominator.
\frac{3a}{\left(a-3\right)\left(a+3\right)}-\frac{2}{a+3}-\frac{1}{a-3}
Factor a^{2}-9.
\frac{3a}{\left(a-3\right)\left(a+3\right)}-\frac{2\left(a-3\right)}{\left(a-3\right)\left(a+3\right)}-\frac{1}{a-3}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(a-3\right)\left(a+3\right) and a+3 is \left(a-3\right)\left(a+3\right). Multiply \frac{2}{a+3} times \frac{a-3}{a-3}.
\frac{3a-2\left(a-3\right)}{\left(a-3\right)\left(a+3\right)}-\frac{1}{a-3}
Since \frac{3a}{\left(a-3\right)\left(a+3\right)} and \frac{2\left(a-3\right)}{\left(a-3\right)\left(a+3\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{3a-2a+6}{\left(a-3\right)\left(a+3\right)}-\frac{1}{a-3}
Do the multiplications in 3a-2\left(a-3\right).
\frac{a+6}{\left(a-3\right)\left(a+3\right)}-\frac{1}{a-3}
Combine like terms in 3a-2a+6.
\frac{a+6}{\left(a-3\right)\left(a+3\right)}-\frac{a+3}{\left(a-3\right)\left(a+3\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(a-3\right)\left(a+3\right) and a-3 is \left(a-3\right)\left(a+3\right). Multiply \frac{1}{a-3} times \frac{a+3}{a+3}.
\frac{a+6-\left(a+3\right)}{\left(a-3\right)\left(a+3\right)}
Since \frac{a+6}{\left(a-3\right)\left(a+3\right)} and \frac{a+3}{\left(a-3\right)\left(a+3\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{a+6-a-3}{\left(a-3\right)\left(a+3\right)}
Do the multiplications in a+6-\left(a+3\right).
\frac{3}{\left(a-3\right)\left(a+3\right)}
Combine like terms in a+6-a-3.
\frac{3}{a^{2}-9}
Expand \left(a-3\right)\left(a+3\right).