Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\frac{3a}{\left(a-1\right)\left(a+1\right)}-\frac{6a^{2}}{\left(a-1\right)\left(a^{2}+a+1\right)}
Factor a^{2}-1. Factor a^{3}-1.
\frac{3a\left(a^{2}+a+1\right)}{\left(a-1\right)\left(a+1\right)\left(a^{2}+a+1\right)}-\frac{6a^{2}\left(a+1\right)}{\left(a-1\right)\left(a+1\right)\left(a^{2}+a+1\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(a-1\right)\left(a+1\right) and \left(a-1\right)\left(a^{2}+a+1\right) is \left(a-1\right)\left(a+1\right)\left(a^{2}+a+1\right). Multiply \frac{3a}{\left(a-1\right)\left(a+1\right)} times \frac{a^{2}+a+1}{a^{2}+a+1}. Multiply \frac{6a^{2}}{\left(a-1\right)\left(a^{2}+a+1\right)} times \frac{a+1}{a+1}.
\frac{3a\left(a^{2}+a+1\right)-6a^{2}\left(a+1\right)}{\left(a-1\right)\left(a+1\right)\left(a^{2}+a+1\right)}
Since \frac{3a\left(a^{2}+a+1\right)}{\left(a-1\right)\left(a+1\right)\left(a^{2}+a+1\right)} and \frac{6a^{2}\left(a+1\right)}{\left(a-1\right)\left(a+1\right)\left(a^{2}+a+1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{3a^{3}+3a^{2}+3a-6a^{3}-6a^{2}}{\left(a-1\right)\left(a+1\right)\left(a^{2}+a+1\right)}
Do the multiplications in 3a\left(a^{2}+a+1\right)-6a^{2}\left(a+1\right).
\frac{-3a^{3}-3a^{2}+3a}{\left(a-1\right)\left(a+1\right)\left(a^{2}+a+1\right)}
Combine like terms in 3a^{3}+3a^{2}+3a-6a^{3}-6a^{2}.
\frac{-3a^{3}-3a^{2}+3a}{a^{4}+a^{3}-a-1}
Expand \left(a-1\right)\left(a+1\right)\left(a^{2}+a+1\right).