Solve for a
a\leq \frac{28}{13}
Share
Copied to clipboard
3\times 3a-4\left(1-a\right)\leq 24
Multiply both sides of the equation by 12, the least common multiple of 4,3. Since 12 is positive, the inequality direction remains the same.
9a-4\left(1-a\right)\leq 24
Multiply 3 and 3 to get 9.
9a-4+4a\leq 24
Use the distributive property to multiply -4 by 1-a.
13a-4\leq 24
Combine 9a and 4a to get 13a.
13a\leq 24+4
Add 4 to both sides.
13a\leq 28
Add 24 and 4 to get 28.
a\leq \frac{28}{13}
Divide both sides by 13. Since 13 is positive, the inequality direction remains the same.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}