Evaluate
-\frac{a}{15}
Differentiate w.r.t. a
-\frac{1}{15} = -0.06666666666666667
Share
Copied to clipboard
\frac{3a^{2}bc^{2}}{5c^{2}\left(-9\right)ab}
Divide \frac{3a^{2}b}{5c^{2}} by \frac{-9ab}{c^{2}} by multiplying \frac{3a^{2}b}{5c^{2}} by the reciprocal of \frac{-9ab}{c^{2}}.
\frac{a}{-3\times 5}
Cancel out 3abc^{2} in both numerator and denominator.
\frac{a}{-15}
Multiply -3 and 5 to get -15.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{3a^{2}bc^{2}}{5c^{2}\left(-9\right)ab})
Divide \frac{3a^{2}b}{5c^{2}} by \frac{-9ab}{c^{2}} by multiplying \frac{3a^{2}b}{5c^{2}} by the reciprocal of \frac{-9ab}{c^{2}}.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{a}{-3\times 5})
Cancel out 3abc^{2} in both numerator and denominator.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{a}{-15})
Multiply -3 and 5 to get -15.
-\frac{1}{15}a^{1-1}
The derivative of ax^{n} is nax^{n-1}.
-\frac{1}{15}a^{0}
Subtract 1 from 1.
-\frac{1}{15}
For any term t except 0, t^{0}=1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}