Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{3a^{2}}{a-4}-\frac{\left(a+2\right)\times 96}{\left(2a-8\right)\left(a^{2}+2a\right)}
Multiply \frac{a+2}{2a-8} times \frac{96}{a^{2}+2a} by multiplying numerator times numerator and denominator times denominator.
\frac{3a^{2}}{a-4}-\frac{96\left(a+2\right)}{2a\left(a-4\right)\left(a+2\right)}
Factor the expressions that are not already factored in \frac{\left(a+2\right)\times 96}{\left(2a-8\right)\left(a^{2}+2a\right)}.
\frac{3a^{2}}{a-4}-\frac{48}{a\left(a-4\right)}
Cancel out 2\left(a+2\right) in both numerator and denominator.
\frac{3a^{2}a}{a\left(a-4\right)}-\frac{48}{a\left(a-4\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of a-4 and a\left(a-4\right) is a\left(a-4\right). Multiply \frac{3a^{2}}{a-4} times \frac{a}{a}.
\frac{3a^{2}a-48}{a\left(a-4\right)}
Since \frac{3a^{2}a}{a\left(a-4\right)} and \frac{48}{a\left(a-4\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{3a^{3}-48}{a\left(a-4\right)}
Do the multiplications in 3a^{2}a-48.
\frac{3a^{3}-48}{a^{2}-4a}
Expand a\left(a-4\right).
\frac{3a^{2}}{a-4}-\frac{\left(a+2\right)\times 96}{\left(2a-8\right)\left(a^{2}+2a\right)}
Multiply \frac{a+2}{2a-8} times \frac{96}{a^{2}+2a} by multiplying numerator times numerator and denominator times denominator.
\frac{3a^{2}}{a-4}-\frac{96\left(a+2\right)}{2a\left(a-4\right)\left(a+2\right)}
Factor the expressions that are not already factored in \frac{\left(a+2\right)\times 96}{\left(2a-8\right)\left(a^{2}+2a\right)}.
\frac{3a^{2}}{a-4}-\frac{48}{a\left(a-4\right)}
Cancel out 2\left(a+2\right) in both numerator and denominator.
\frac{3a^{2}a}{a\left(a-4\right)}-\frac{48}{a\left(a-4\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of a-4 and a\left(a-4\right) is a\left(a-4\right). Multiply \frac{3a^{2}}{a-4} times \frac{a}{a}.
\frac{3a^{2}a-48}{a\left(a-4\right)}
Since \frac{3a^{2}a}{a\left(a-4\right)} and \frac{48}{a\left(a-4\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{3a^{3}-48}{a\left(a-4\right)}
Do the multiplications in 3a^{2}a-48.
\frac{3a^{3}-48}{a^{2}-4a}
Expand a\left(a-4\right).