Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{3a^{2}}{\left(a-2\right)\left(a+2\right)}-\frac{3a-2}{a-2}
Factor a^{2}-4.
\frac{3a^{2}}{\left(a-2\right)\left(a+2\right)}-\frac{\left(3a-2\right)\left(a+2\right)}{\left(a-2\right)\left(a+2\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(a-2\right)\left(a+2\right) and a-2 is \left(a-2\right)\left(a+2\right). Multiply \frac{3a-2}{a-2} times \frac{a+2}{a+2}.
\frac{3a^{2}-\left(3a-2\right)\left(a+2\right)}{\left(a-2\right)\left(a+2\right)}
Since \frac{3a^{2}}{\left(a-2\right)\left(a+2\right)} and \frac{\left(3a-2\right)\left(a+2\right)}{\left(a-2\right)\left(a+2\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{3a^{2}-3a^{2}-6a+2a+4}{\left(a-2\right)\left(a+2\right)}
Do the multiplications in 3a^{2}-\left(3a-2\right)\left(a+2\right).
\frac{-4a+4}{\left(a-2\right)\left(a+2\right)}
Combine like terms in 3a^{2}-3a^{2}-6a+2a+4.
\frac{-4a+4}{a^{2}-4}
Expand \left(a-2\right)\left(a+2\right).
\frac{3a^{2}}{\left(a-2\right)\left(a+2\right)}-\frac{3a-2}{a-2}
Factor a^{2}-4.
\frac{3a^{2}}{\left(a-2\right)\left(a+2\right)}-\frac{\left(3a-2\right)\left(a+2\right)}{\left(a-2\right)\left(a+2\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(a-2\right)\left(a+2\right) and a-2 is \left(a-2\right)\left(a+2\right). Multiply \frac{3a-2}{a-2} times \frac{a+2}{a+2}.
\frac{3a^{2}-\left(3a-2\right)\left(a+2\right)}{\left(a-2\right)\left(a+2\right)}
Since \frac{3a^{2}}{\left(a-2\right)\left(a+2\right)} and \frac{\left(3a-2\right)\left(a+2\right)}{\left(a-2\right)\left(a+2\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{3a^{2}-3a^{2}-6a+2a+4}{\left(a-2\right)\left(a+2\right)}
Do the multiplications in 3a^{2}-\left(3a-2\right)\left(a+2\right).
\frac{-4a+4}{\left(a-2\right)\left(a+2\right)}
Combine like terms in 3a^{2}-3a^{2}-6a+2a+4.
\frac{-4a+4}{a^{2}-4}
Expand \left(a-2\right)\left(a+2\right).