Evaluate
\frac{3a+5b}{a-b}
Expand
-\frac{3a+5b}{b-a}
Share
Copied to clipboard
\frac{-\left(3a+b\right)}{-a+b}-\frac{4b}{-a+b}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of a-b and b-a is -a+b. Multiply \frac{3a+b}{a-b} times \frac{-1}{-1}.
\frac{-\left(3a+b\right)-4b}{-a+b}
Since \frac{-\left(3a+b\right)}{-a+b} and \frac{4b}{-a+b} have the same denominator, subtract them by subtracting their numerators.
\frac{-3a-b-4b}{-a+b}
Do the multiplications in -\left(3a+b\right)-4b.
\frac{-3a-5b}{-a+b}
Combine like terms in -3a-b-4b.
\frac{-\left(3a+b\right)}{-a+b}-\frac{4b}{-a+b}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of a-b and b-a is -a+b. Multiply \frac{3a+b}{a-b} times \frac{-1}{-1}.
\frac{-\left(3a+b\right)-4b}{-a+b}
Since \frac{-\left(3a+b\right)}{-a+b} and \frac{4b}{-a+b} have the same denominator, subtract them by subtracting their numerators.
\frac{-3a-b-4b}{-a+b}
Do the multiplications in -\left(3a+b\right)-4b.
\frac{-3a-5b}{-a+b}
Combine like terms in -3a-b-4b.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}