Solve for a
a=\frac{2x-b}{3}
Solve for b
b=2x-3a
Graph
Share
Copied to clipboard
\frac{3}{2}a+\frac{1}{2}b=x
Divide each term of 3a+b by 2 to get \frac{3}{2}a+\frac{1}{2}b.
\frac{3}{2}a=x-\frac{1}{2}b
Subtract \frac{1}{2}b from both sides.
\frac{3}{2}a=-\frac{b}{2}+x
The equation is in standard form.
\frac{\frac{3}{2}a}{\frac{3}{2}}=\frac{-\frac{b}{2}+x}{\frac{3}{2}}
Divide both sides of the equation by \frac{3}{2}, which is the same as multiplying both sides by the reciprocal of the fraction.
a=\frac{-\frac{b}{2}+x}{\frac{3}{2}}
Dividing by \frac{3}{2} undoes the multiplication by \frac{3}{2}.
a=\frac{2x-b}{3}
Divide x-\frac{b}{2} by \frac{3}{2} by multiplying x-\frac{b}{2} by the reciprocal of \frac{3}{2}.
\frac{3}{2}a+\frac{1}{2}b=x
Divide each term of 3a+b by 2 to get \frac{3}{2}a+\frac{1}{2}b.
\frac{1}{2}b=x-\frac{3}{2}a
Subtract \frac{3}{2}a from both sides.
\frac{1}{2}b=-\frac{3a}{2}+x
The equation is in standard form.
\frac{\frac{1}{2}b}{\frac{1}{2}}=\frac{-\frac{3a}{2}+x}{\frac{1}{2}}
Multiply both sides by 2.
b=\frac{-\frac{3a}{2}+x}{\frac{1}{2}}
Dividing by \frac{1}{2} undoes the multiplication by \frac{1}{2}.
b=2x-3a
Divide x-\frac{3a}{2} by \frac{1}{2} by multiplying x-\frac{3a}{2} by the reciprocal of \frac{1}{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}