Solve for a
a = \frac{\sqrt{497} - 7}{8} \approx 1.911687101
a=\frac{-\sqrt{497}-7}{8}\approx -3.661687101
Share
Copied to clipboard
3a+14-2a\times 2\left(a-1\right)=14\left(a-1\right)
Variable a cannot be equal to 1 since division by zero is not defined. Multiply both sides of the equation by 2\left(a-1\right).
3a+14-4a\left(a-1\right)=14\left(a-1\right)
Multiply -2 and 2 to get -4.
3a+14-4a^{2}+4a=14\left(a-1\right)
Use the distributive property to multiply -4a by a-1.
7a+14-4a^{2}=14\left(a-1\right)
Combine 3a and 4a to get 7a.
7a+14-4a^{2}=14a-14
Use the distributive property to multiply 14 by a-1.
7a+14-4a^{2}-14a=-14
Subtract 14a from both sides.
-7a+14-4a^{2}=-14
Combine 7a and -14a to get -7a.
-7a+14-4a^{2}+14=0
Add 14 to both sides.
-7a+28-4a^{2}=0
Add 14 and 14 to get 28.
-4a^{2}-7a+28=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
a=\frac{-\left(-7\right)±\sqrt{\left(-7\right)^{2}-4\left(-4\right)\times 28}}{2\left(-4\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -4 for a, -7 for b, and 28 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
a=\frac{-\left(-7\right)±\sqrt{49-4\left(-4\right)\times 28}}{2\left(-4\right)}
Square -7.
a=\frac{-\left(-7\right)±\sqrt{49+16\times 28}}{2\left(-4\right)}
Multiply -4 times -4.
a=\frac{-\left(-7\right)±\sqrt{49+448}}{2\left(-4\right)}
Multiply 16 times 28.
a=\frac{-\left(-7\right)±\sqrt{497}}{2\left(-4\right)}
Add 49 to 448.
a=\frac{7±\sqrt{497}}{2\left(-4\right)}
The opposite of -7 is 7.
a=\frac{7±\sqrt{497}}{-8}
Multiply 2 times -4.
a=\frac{\sqrt{497}+7}{-8}
Now solve the equation a=\frac{7±\sqrt{497}}{-8} when ± is plus. Add 7 to \sqrt{497}.
a=\frac{-\sqrt{497}-7}{8}
Divide 7+\sqrt{497} by -8.
a=\frac{7-\sqrt{497}}{-8}
Now solve the equation a=\frac{7±\sqrt{497}}{-8} when ± is minus. Subtract \sqrt{497} from 7.
a=\frac{\sqrt{497}-7}{8}
Divide 7-\sqrt{497} by -8.
a=\frac{-\sqrt{497}-7}{8} a=\frac{\sqrt{497}-7}{8}
The equation is now solved.
3a+14-2a\times 2\left(a-1\right)=14\left(a-1\right)
Variable a cannot be equal to 1 since division by zero is not defined. Multiply both sides of the equation by 2\left(a-1\right).
3a+14-4a\left(a-1\right)=14\left(a-1\right)
Multiply -2 and 2 to get -4.
3a+14-4a^{2}+4a=14\left(a-1\right)
Use the distributive property to multiply -4a by a-1.
7a+14-4a^{2}=14\left(a-1\right)
Combine 3a and 4a to get 7a.
7a+14-4a^{2}=14a-14
Use the distributive property to multiply 14 by a-1.
7a+14-4a^{2}-14a=-14
Subtract 14a from both sides.
-7a+14-4a^{2}=-14
Combine 7a and -14a to get -7a.
-7a-4a^{2}=-14-14
Subtract 14 from both sides.
-7a-4a^{2}=-28
Subtract 14 from -14 to get -28.
-4a^{2}-7a=-28
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-4a^{2}-7a}{-4}=-\frac{28}{-4}
Divide both sides by -4.
a^{2}+\left(-\frac{7}{-4}\right)a=-\frac{28}{-4}
Dividing by -4 undoes the multiplication by -4.
a^{2}+\frac{7}{4}a=-\frac{28}{-4}
Divide -7 by -4.
a^{2}+\frac{7}{4}a=7
Divide -28 by -4.
a^{2}+\frac{7}{4}a+\left(\frac{7}{8}\right)^{2}=7+\left(\frac{7}{8}\right)^{2}
Divide \frac{7}{4}, the coefficient of the x term, by 2 to get \frac{7}{8}. Then add the square of \frac{7}{8} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
a^{2}+\frac{7}{4}a+\frac{49}{64}=7+\frac{49}{64}
Square \frac{7}{8} by squaring both the numerator and the denominator of the fraction.
a^{2}+\frac{7}{4}a+\frac{49}{64}=\frac{497}{64}
Add 7 to \frac{49}{64}.
\left(a+\frac{7}{8}\right)^{2}=\frac{497}{64}
Factor a^{2}+\frac{7}{4}a+\frac{49}{64}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(a+\frac{7}{8}\right)^{2}}=\sqrt{\frac{497}{64}}
Take the square root of both sides of the equation.
a+\frac{7}{8}=\frac{\sqrt{497}}{8} a+\frac{7}{8}=-\frac{\sqrt{497}}{8}
Simplify.
a=\frac{\sqrt{497}-7}{8} a=\frac{-\sqrt{497}-7}{8}
Subtract \frac{7}{8} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}