Solve for T
T=\frac{2x-11}{x+7}
x\neq 3\text{ and }x\neq -7
Solve for x
x=\frac{7T+11}{2-T}
T\neq -\frac{1}{2}\text{ and }T\neq 2
Graph
Share
Copied to clipboard
\left(x-3\right)\left(3T+9\right)=\left(6T+3\right)\left(x+2\right)
Variable T cannot be equal to -\frac{1}{2} since division by zero is not defined. Multiply both sides of the equation by 3\left(x-3\right)\left(2T+1\right), the least common multiple of 6T+3,x-3.
3xT+9x-9T-27=\left(6T+3\right)\left(x+2\right)
Use the distributive property to multiply x-3 by 3T+9.
3xT+9x-9T-27=6Tx+12T+3x+6
Use the distributive property to multiply 6T+3 by x+2.
3xT+9x-9T-27-6Tx=12T+3x+6
Subtract 6Tx from both sides.
-3xT+9x-9T-27=12T+3x+6
Combine 3xT and -6Tx to get -3xT.
-3xT+9x-9T-27-12T=3x+6
Subtract 12T from both sides.
-3xT+9x-21T-27=3x+6
Combine -9T and -12T to get -21T.
-3xT-21T-27=3x+6-9x
Subtract 9x from both sides.
-3xT-21T-27=-6x+6
Combine 3x and -9x to get -6x.
-3xT-21T=-6x+6+27
Add 27 to both sides.
-3xT-21T=-6x+33
Add 6 and 27 to get 33.
\left(-3x-21\right)T=-6x+33
Combine all terms containing T.
\left(-3x-21\right)T=33-6x
The equation is in standard form.
\frac{\left(-3x-21\right)T}{-3x-21}=\frac{33-6x}{-3x-21}
Divide both sides by -3x-21.
T=\frac{33-6x}{-3x-21}
Dividing by -3x-21 undoes the multiplication by -3x-21.
T=-\frac{11-2x}{x+7}
Divide -6x+33 by -3x-21.
T=-\frac{11-2x}{x+7}\text{, }T\neq -\frac{1}{2}
Variable T cannot be equal to -\frac{1}{2}.
\left(x-3\right)\left(3T+9\right)=\left(6T+3\right)\left(x+2\right)
Variable x cannot be equal to 3 since division by zero is not defined. Multiply both sides of the equation by 3\left(x-3\right)\left(2T+1\right), the least common multiple of 6T+3,x-3.
3xT+9x-9T-27=\left(6T+3\right)\left(x+2\right)
Use the distributive property to multiply x-3 by 3T+9.
3xT+9x-9T-27=6Tx+12T+3x+6
Use the distributive property to multiply 6T+3 by x+2.
3xT+9x-9T-27-6Tx=12T+3x+6
Subtract 6Tx from both sides.
-3xT+9x-9T-27=12T+3x+6
Combine 3xT and -6Tx to get -3xT.
-3xT+9x-9T-27-3x=12T+6
Subtract 3x from both sides.
-3xT+6x-9T-27=12T+6
Combine 9x and -3x to get 6x.
-3xT+6x-27=12T+6+9T
Add 9T to both sides.
-3xT+6x-27=21T+6
Combine 12T and 9T to get 21T.
-3xT+6x=21T+6+27
Add 27 to both sides.
-3xT+6x=21T+33
Add 6 and 27 to get 33.
\left(-3T+6\right)x=21T+33
Combine all terms containing x.
\left(6-3T\right)x=21T+33
The equation is in standard form.
\frac{\left(6-3T\right)x}{6-3T}=\frac{21T+33}{6-3T}
Divide both sides by -3T+6.
x=\frac{21T+33}{6-3T}
Dividing by -3T+6 undoes the multiplication by -3T+6.
x=\frac{7T+11}{2-T}
Divide 21T+33 by -3T+6.
x=\frac{7T+11}{2-T}\text{, }x\neq 3
Variable x cannot be equal to 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}