Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image
Graph

Share

\frac{\frac{3-x}{x-2}}{\frac{5}{x-2}+\frac{\left(-x-2\right)\left(x-2\right)}{x-2}}\left(x+3\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply -x-2 times \frac{x-2}{x-2}.
\frac{\frac{3-x}{x-2}}{\frac{5+\left(-x-2\right)\left(x-2\right)}{x-2}}\left(x+3\right)
Since \frac{5}{x-2} and \frac{\left(-x-2\right)\left(x-2\right)}{x-2} have the same denominator, add them by adding their numerators.
\frac{\frac{3-x}{x-2}}{\frac{5-x^{2}+2x-2x+4}{x-2}}\left(x+3\right)
Do the multiplications in 5+\left(-x-2\right)\left(x-2\right).
\frac{\frac{3-x}{x-2}}{\frac{9-x^{2}}{x-2}}\left(x+3\right)
Combine like terms in 5-x^{2}+2x-2x+4.
\frac{\left(3-x\right)\left(x-2\right)}{\left(x-2\right)\left(9-x^{2}\right)}\left(x+3\right)
Divide \frac{3-x}{x-2} by \frac{9-x^{2}}{x-2} by multiplying \frac{3-x}{x-2} by the reciprocal of \frac{9-x^{2}}{x-2}.
\frac{-x+3}{-x^{2}+9}\left(x+3\right)
Cancel out x-2 in both numerator and denominator.
\frac{-x+3}{\left(x-3\right)\left(-x-3\right)}\left(x+3\right)
Factor the expressions that are not already factored in \frac{-x+3}{-x^{2}+9}.
\frac{-\left(x-3\right)}{\left(x-3\right)\left(-x-3\right)}\left(x+3\right)
Extract the negative sign in 3-x.
\frac{-1}{-x-3}\left(x+3\right)
Cancel out x-3 in both numerator and denominator.
\frac{-\left(x+3\right)}{-x-3}
Express \frac{-1}{-x-3}\left(x+3\right) as a single fraction.
\frac{-\left(-1\right)\left(-x-3\right)}{-x-3}
Extract the negative sign in x+3.
-\left(-1\right)
Cancel out -x-3 in both numerator and denominator.
1
Multiply -1 and -1 to get 1.