Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{\left(3-x\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}+\frac{\left(2x-5\right)\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}+1
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x-2 and x+2 is \left(x-2\right)\left(x+2\right). Multiply \frac{3-x}{x-2} times \frac{x+2}{x+2}. Multiply \frac{2x-5}{x+2} times \frac{x-2}{x-2}.
\frac{\left(3-x\right)\left(x+2\right)+\left(2x-5\right)\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}+1
Since \frac{\left(3-x\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)} and \frac{\left(2x-5\right)\left(x-2\right)}{\left(x-2\right)\left(x+2\right)} have the same denominator, add them by adding their numerators.
\frac{3x+6-x^{2}-2x+2x^{2}-4x-5x+10}{\left(x-2\right)\left(x+2\right)}+1
Do the multiplications in \left(3-x\right)\left(x+2\right)+\left(2x-5\right)\left(x-2\right).
\frac{-8x+16+x^{2}}{\left(x-2\right)\left(x+2\right)}+1
Combine like terms in 3x+6-x^{2}-2x+2x^{2}-4x-5x+10.
\frac{-8x+16+x^{2}}{\left(x-2\right)\left(x+2\right)}+\frac{\left(x-2\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{\left(x-2\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}.
\frac{-8x+16+x^{2}+\left(x-2\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}
Since \frac{-8x+16+x^{2}}{\left(x-2\right)\left(x+2\right)} and \frac{\left(x-2\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)} have the same denominator, add them by adding their numerators.
\frac{-8x+16+x^{2}+x^{2}+2x-2x-4}{\left(x-2\right)\left(x+2\right)}
Do the multiplications in -8x+16+x^{2}+\left(x-2\right)\left(x+2\right).
\frac{-8x+12+2x^{2}}{\left(x-2\right)\left(x+2\right)}
Combine like terms in -8x+16+x^{2}+x^{2}+2x-2x-4.
\frac{-8x+12+2x^{2}}{x^{2}-4}
Expand \left(x-2\right)\left(x+2\right).
\frac{\left(3-x\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}+\frac{\left(2x-5\right)\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}+1
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x-2 and x+2 is \left(x-2\right)\left(x+2\right). Multiply \frac{3-x}{x-2} times \frac{x+2}{x+2}. Multiply \frac{2x-5}{x+2} times \frac{x-2}{x-2}.
\frac{\left(3-x\right)\left(x+2\right)+\left(2x-5\right)\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}+1
Since \frac{\left(3-x\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)} and \frac{\left(2x-5\right)\left(x-2\right)}{\left(x-2\right)\left(x+2\right)} have the same denominator, add them by adding their numerators.
\frac{3x+6-x^{2}-2x+2x^{2}-4x-5x+10}{\left(x-2\right)\left(x+2\right)}+1
Do the multiplications in \left(3-x\right)\left(x+2\right)+\left(2x-5\right)\left(x-2\right).
\frac{-8x+16+x^{2}}{\left(x-2\right)\left(x+2\right)}+1
Combine like terms in 3x+6-x^{2}-2x+2x^{2}-4x-5x+10.
\frac{-8x+16+x^{2}}{\left(x-2\right)\left(x+2\right)}+\frac{\left(x-2\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{\left(x-2\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}.
\frac{-8x+16+x^{2}+\left(x-2\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}
Since \frac{-8x+16+x^{2}}{\left(x-2\right)\left(x+2\right)} and \frac{\left(x-2\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)} have the same denominator, add them by adding their numerators.
\frac{-8x+16+x^{2}+x^{2}+2x-2x-4}{\left(x-2\right)\left(x+2\right)}
Do the multiplications in -8x+16+x^{2}+\left(x-2\right)\left(x+2\right).
\frac{-8x+12+2x^{2}}{\left(x-2\right)\left(x+2\right)}
Combine like terms in -8x+16+x^{2}+x^{2}+2x-2x-4.
\frac{-8x+12+2x^{2}}{x^{2}-4}
Expand \left(x-2\right)\left(x+2\right).