Evaluate
-\frac{1}{2}=-0.5
Factor
-\frac{1}{2} = -0.5
Graph
Share
Copied to clipboard
\frac{3-x}{4-2x}\times \frac{\left(x-2\right)\left(x+3\right)}{\left(x-3\right)\left(-x-3\right)}
Factor the expressions that are not already factored in \frac{x^{2}+x-6}{9-x^{2}}.
\frac{3-x}{4-2x}\times \frac{-\left(x-2\right)\left(-x-3\right)}{\left(x-3\right)\left(-x-3\right)}
Extract the negative sign in 3+x.
\frac{3-x}{4-2x}\times \frac{-\left(x-2\right)}{x-3}
Cancel out -x-3 in both numerator and denominator.
\frac{\left(3-x\right)\left(-1\right)\left(x-2\right)}{\left(4-2x\right)\left(x-3\right)}
Multiply \frac{3-x}{4-2x} times \frac{-\left(x-2\right)}{x-3} by multiplying numerator times numerator and denominator times denominator.
\frac{-\left(-1\right)\left(x-3\right)\left(x-2\right)}{\left(x-3\right)\left(-2x+4\right)}
Extract the negative sign in 3-x.
\frac{-\left(-1\right)\left(x-2\right)}{-2x+4}
Cancel out x-3 in both numerator and denominator.
\frac{x-2}{-2x+4}
Multiply -1 and -1 to get 1.
\frac{x-2}{2\left(-x+2\right)}
Factor the expressions that are not already factored.
\frac{-\left(-x+2\right)}{2\left(-x+2\right)}
Extract the negative sign in -2+x.
\frac{-1}{2}
Cancel out -x+2 in both numerator and denominator.
-\frac{1}{2}
Fraction \frac{-1}{2} can be rewritten as -\frac{1}{2} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}