Solve for x
x = -\frac{6}{5} = -1\frac{1}{5} = -1.2
Graph
Share
Copied to clipboard
4\left(3-x\right)=6\left(x+1\right)-3\times 5x
Multiply both sides of the equation by 12, the least common multiple of 3,2,4.
12-4x=6\left(x+1\right)-3\times 5x
Use the distributive property to multiply 4 by 3-x.
12-4x=6x+6-3\times 5x
Use the distributive property to multiply 6 by x+1.
12-4x=6x+6-15x
Multiply -3 and 5 to get -15.
12-4x=-9x+6
Combine 6x and -15x to get -9x.
12-4x+9x=6
Add 9x to both sides.
12+5x=6
Combine -4x and 9x to get 5x.
5x=6-12
Subtract 12 from both sides.
5x=-6
Subtract 12 from 6 to get -6.
x=\frac{-6}{5}
Divide both sides by 5.
x=-\frac{6}{5}
Fraction \frac{-6}{5} can be rewritten as -\frac{6}{5} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}