Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{\frac{3-x}{2x-4}}{\frac{\left(x+2\right)\left(x-2\right)}{x-2}-\frac{5}{x-2}}
To add or subtract expressions, expand them to make their denominators the same. Multiply x+2 times \frac{x-2}{x-2}.
\frac{\frac{3-x}{2x-4}}{\frac{\left(x+2\right)\left(x-2\right)-5}{x-2}}
Since \frac{\left(x+2\right)\left(x-2\right)}{x-2} and \frac{5}{x-2} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{3-x}{2x-4}}{\frac{x^{2}-2x+2x-4-5}{x-2}}
Do the multiplications in \left(x+2\right)\left(x-2\right)-5.
\frac{\frac{3-x}{2x-4}}{\frac{x^{2}-9}{x-2}}
Combine like terms in x^{2}-2x+2x-4-5.
\frac{\left(3-x\right)\left(x-2\right)}{\left(2x-4\right)\left(x^{2}-9\right)}
Divide \frac{3-x}{2x-4} by \frac{x^{2}-9}{x-2} by multiplying \frac{3-x}{2x-4} by the reciprocal of \frac{x^{2}-9}{x-2}.
\frac{\left(x-2\right)\left(-x+3\right)}{2\left(x-3\right)\left(x-2\right)\left(x+3\right)}
Factor the expressions that are not already factored.
\frac{-\left(x-3\right)\left(x-2\right)}{2\left(x-3\right)\left(x-2\right)\left(x+3\right)}
Extract the negative sign in 3-x.
\frac{-1}{2\left(x+3\right)}
Cancel out \left(x-3\right)\left(x-2\right) in both numerator and denominator.
\frac{-1}{2x+6}
Expand the expression.
\frac{\frac{3-x}{2x-4}}{\frac{\left(x+2\right)\left(x-2\right)}{x-2}-\frac{5}{x-2}}
To add or subtract expressions, expand them to make their denominators the same. Multiply x+2 times \frac{x-2}{x-2}.
\frac{\frac{3-x}{2x-4}}{\frac{\left(x+2\right)\left(x-2\right)-5}{x-2}}
Since \frac{\left(x+2\right)\left(x-2\right)}{x-2} and \frac{5}{x-2} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{3-x}{2x-4}}{\frac{x^{2}-2x+2x-4-5}{x-2}}
Do the multiplications in \left(x+2\right)\left(x-2\right)-5.
\frac{\frac{3-x}{2x-4}}{\frac{x^{2}-9}{x-2}}
Combine like terms in x^{2}-2x+2x-4-5.
\frac{\left(3-x\right)\left(x-2\right)}{\left(2x-4\right)\left(x^{2}-9\right)}
Divide \frac{3-x}{2x-4} by \frac{x^{2}-9}{x-2} by multiplying \frac{3-x}{2x-4} by the reciprocal of \frac{x^{2}-9}{x-2}.
\frac{\left(x-2\right)\left(-x+3\right)}{2\left(x-3\right)\left(x-2\right)\left(x+3\right)}
Factor the expressions that are not already factored.
\frac{-\left(x-3\right)\left(x-2\right)}{2\left(x-3\right)\left(x-2\right)\left(x+3\right)}
Extract the negative sign in 3-x.
\frac{-1}{2\left(x+3\right)}
Cancel out \left(x-3\right)\left(x-2\right) in both numerator and denominator.
\frac{-1}{2x+6}
Expand the expression.