Solve for k
k=3
k=5
Share
Copied to clipboard
3-k=\left(-k+4\right)k+\left(-k+4\right)\left(-3\right)
Variable k cannot be equal to 4 since division by zero is not defined. Multiply both sides of the equation by -k+4.
3-k=-k^{2}+4k+\left(-k+4\right)\left(-3\right)
Use the distributive property to multiply -k+4 by k.
3-k=-k^{2}+4k+3k-12
Use the distributive property to multiply -k+4 by -3.
3-k=-k^{2}+7k-12
Combine 4k and 3k to get 7k.
3-k+k^{2}=7k-12
Add k^{2} to both sides.
3-k+k^{2}-7k=-12
Subtract 7k from both sides.
3-8k+k^{2}=-12
Combine -k and -7k to get -8k.
3-8k+k^{2}+12=0
Add 12 to both sides.
15-8k+k^{2}=0
Add 3 and 12 to get 15.
k^{2}-8k+15=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
k=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\times 15}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -8 for b, and 15 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
k=\frac{-\left(-8\right)±\sqrt{64-4\times 15}}{2}
Square -8.
k=\frac{-\left(-8\right)±\sqrt{64-60}}{2}
Multiply -4 times 15.
k=\frac{-\left(-8\right)±\sqrt{4}}{2}
Add 64 to -60.
k=\frac{-\left(-8\right)±2}{2}
Take the square root of 4.
k=\frac{8±2}{2}
The opposite of -8 is 8.
k=\frac{10}{2}
Now solve the equation k=\frac{8±2}{2} when ± is plus. Add 8 to 2.
k=5
Divide 10 by 2.
k=\frac{6}{2}
Now solve the equation k=\frac{8±2}{2} when ± is minus. Subtract 2 from 8.
k=3
Divide 6 by 2.
k=5 k=3
The equation is now solved.
3-k=\left(-k+4\right)k+\left(-k+4\right)\left(-3\right)
Variable k cannot be equal to 4 since division by zero is not defined. Multiply both sides of the equation by -k+4.
3-k=-k^{2}+4k+\left(-k+4\right)\left(-3\right)
Use the distributive property to multiply -k+4 by k.
3-k=-k^{2}+4k+3k-12
Use the distributive property to multiply -k+4 by -3.
3-k=-k^{2}+7k-12
Combine 4k and 3k to get 7k.
3-k+k^{2}=7k-12
Add k^{2} to both sides.
3-k+k^{2}-7k=-12
Subtract 7k from both sides.
3-8k+k^{2}=-12
Combine -k and -7k to get -8k.
-8k+k^{2}=-12-3
Subtract 3 from both sides.
-8k+k^{2}=-15
Subtract 3 from -12 to get -15.
k^{2}-8k=-15
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
k^{2}-8k+\left(-4\right)^{2}=-15+\left(-4\right)^{2}
Divide -8, the coefficient of the x term, by 2 to get -4. Then add the square of -4 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
k^{2}-8k+16=-15+16
Square -4.
k^{2}-8k+16=1
Add -15 to 16.
\left(k-4\right)^{2}=1
Factor k^{2}-8k+16. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(k-4\right)^{2}}=\sqrt{1}
Take the square root of both sides of the equation.
k-4=1 k-4=-1
Simplify.
k=5 k=3
Add 4 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}