Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(3-i\right)\left(2-i\right)}{\left(2+i\right)\left(2-i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, 2-i.
\frac{\left(3-i\right)\left(2-i\right)}{2^{2}-i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(3-i\right)\left(2-i\right)}{5}
By definition, i^{2} is -1. Calculate the denominator.
\frac{3\times 2+3\left(-i\right)-i\times 2-\left(-i^{2}\right)}{5}
Multiply complex numbers 3-i and 2-i like you multiply binomials.
\frac{3\times 2+3\left(-i\right)-i\times 2-\left(-\left(-1\right)\right)}{5}
By definition, i^{2} is -1.
\frac{6-3i-2i-1}{5}
Do the multiplications in 3\times 2+3\left(-i\right)-i\times 2-\left(-\left(-1\right)\right).
\frac{6-1+\left(-3-2\right)i}{5}
Combine the real and imaginary parts in 6-3i-2i-1.
\frac{5-5i}{5}
Do the additions in 6-1+\left(-3-2\right)i.
1-i
Divide 5-5i by 5 to get 1-i.
Re(\frac{\left(3-i\right)\left(2-i\right)}{\left(2+i\right)\left(2-i\right)})
Multiply both numerator and denominator of \frac{3-i}{2+i} by the complex conjugate of the denominator, 2-i.
Re(\frac{\left(3-i\right)\left(2-i\right)}{2^{2}-i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(3-i\right)\left(2-i\right)}{5})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{3\times 2+3\left(-i\right)-i\times 2-\left(-i^{2}\right)}{5})
Multiply complex numbers 3-i and 2-i like you multiply binomials.
Re(\frac{3\times 2+3\left(-i\right)-i\times 2-\left(-\left(-1\right)\right)}{5})
By definition, i^{2} is -1.
Re(\frac{6-3i-2i-1}{5})
Do the multiplications in 3\times 2+3\left(-i\right)-i\times 2-\left(-\left(-1\right)\right).
Re(\frac{6-1+\left(-3-2\right)i}{5})
Combine the real and imaginary parts in 6-3i-2i-1.
Re(\frac{5-5i}{5})
Do the additions in 6-1+\left(-3-2\right)i.
Re(1-i)
Divide 5-5i by 5 to get 1-i.
1
The real part of 1-i is 1.